• Title/Summary/Keyword: Stationary distribution

Search Result 339, Processing Time 0.024 seconds

A Note on the M/G/1/K Queue with Two-Threshold Hysteresis Strategy of Service Intensity Switching (고객수 상태에 따른 서비스를 제공하는 M/G/1/K 대기체계에 관한 소고)

  • Choi, Doo Il;Kim, Bo Keun;Lee, Doo Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.3
    • /
    • pp.1-5
    • /
    • 2014
  • We study the paper Zhernovyi and Zhernovyi [Zhernovyi, K.Y. and Y.V. Zhernovyi, "An $M^{\Theta}/G/1/m$ system with two-threshold hysteresis strategy of service intensity switching," Journal of Communications and Electronics, Vol.12, No.2(2012), pp.127-140]. In the paper, authors used the Korolyuk potential method to obtain the stationary queue length distribution. Instead, our note makes an attempt to apply the most frequently used methods : the embedded Markov chain and the supplementary variable method. We derive the queue length distribution at a customer's departure epoch and then at an arbitrary epoch.

A Study on the design of bipolar plate for proton exchange membrane fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 디자인에 관한 고찰)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su;Lim, Jung-Lyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.39-42
    • /
    • 2007
  • Hydrogen fuel cell is clean and efficient technology along with high energy densities. While there are many different types of fuel cells, the proton exchange membrane fuel cell stands out as one of the most promising for transportation and small stationary applications. This paper focuses on design of bipolar plate for proton exchange membrane fuel cell. The bipolar plate model is realistically and accurately simulated velocity distribution, current density distribution and its effect on the PEMFC system using CFD tool FLUENT.

  • PDF

Analysis of hemodynamics in cerebral artery related to moyamoya disease (모야모야병과 연관된 뇌동맥에서의 혈류역학 분석)

  • Lee, Seung-Cheol;Lim, Ki-Moo;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1647-1650
    • /
    • 2008
  • The moyamoya disease is a type of cerebrovascular disease which produces thin abnormal blood vessels like haze in the brain base because the end of internal carotid artery which supplies about 80% of blood is blocked. Regarding this moyamoya disease, the shearing stress and thrombus generation are mentioned as its main causes. This study three-dimensionally implemented the ICA, ACA, and MCA parts of the cerebrovascular configuration related to the moyamoya disease, and analyzed the hydrodynamic phenomenon with the commercial program ADINA. In particular, the correlations between shearing stress and speed distribution according to the branch angle of ACA and MCA. A numerical analysis found that the greater the branch angle of ACA and MCA, the lower the shearing stress and the greater the stationary area of the flow.. Put Abstract text here.

  • PDF

Spatial Distribution of the Physicochemical Characteristics of Spring Waters in Mt. Geumjung (금정산 용천수의 물리화학적 성질의 공간적 분포 특성)

  • 김문수;함세영;김광성;김성이;성익환;이병대
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.262-265
    • /
    • 2000
  • In order to estimate spatial physicochemical properties of the spring waters in the study area, spring waters at 57 sites were investigated for measuring ten items (temperature, pH, Eh, EC, TDS, DO, salinity, alkalinity, discharge rate, and surface elevation), To compare each component with one another, regression analysis was carried out. Kriging was used to estimate the spatial characteristics and continuity of data in the study area. To solve kriging equation, the semivariogram was calculated using geostatistical software GS$^{+}$(version 3.1). As a result of semivariogram analysis, the data of nine components but surface elevation could be assumed as stationary random function, and ordinary kriging method was used for making contour maps.s.

  • PDF

An experimental study on the concentration distribution of helium and air mixture in the direct injection type engine (헬륨$\cdot$공기흡합기농도분포에 관한 실험적 연구)

  • 김봉곤;하종률;권순석
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.33-39
    • /
    • 1990
  • This study has been conducted by experiments for distribution of concentration of helium gas, which is jetted into stationary atmosphere at the normal temperature and pressure. It is able to obtain the data for concentration of helium and air mixtures by the use of hot wire probe which has fast response. At an up stream, the concentration gradient which is attained is steep. At a down stream, the mixing time of helium and air is gradually shortened with the lapse of time in front of a jet. The arrival frequency of a jet in an unsteady area is mostly constant from 0% to 100% up to 80mm, but the time which is reaching to 100% is gradually to lengthen as a descending downstream. After starting a jet and the point of 90%, the mixing time is especially to lengthen. This reason comes from the turbulent intensity which causes for mixing of helium and air. This time difference which causes according to lengthen a jet should be considered in the design of combustion chamber.

  • PDF

A Numerical Study on the Flow Field in an Optical Disc Drive (광디스크 드라이브 내부 유동장 해석)

  • 최명렬;성평용;이경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.991-997
    • /
    • 2003
  • A flow field around a disc in an optical disc drive is invested using numerical methods. The high-speed rotating disc induces a strong flow field around the disc, which causes the pressure distribution on the surfaces of the disc. The pressure difference between the upper and the lower surfaces causes the deformation of the disc. In the first part of this study, flow fields around a rotating disc and a stationary wall are investigated using a similarity solution method, in order to identify the effect of the distance between the disc and the wall on the pressure distribution on the surfaces of the disc. In the second part, flow field in a slim-type optical disc drive is studied using a commercial code in order to consider the effect of the vortices generated by the local geometry of the drive.

  • PDF

Physiological Neuro-Fuzzy Learning Algorithm for Face Recognition

  • Kim, Kwang-Baek;Woo, Young-Woon;Park, Hyun-Jung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.50-53
    • /
    • 2007
  • This paper presents face features detection and a new physiological neuro-fuzzy learning method by using two-dimensional variances based on variation of gray level and by learning for a statistical distribution of the detected face features. This paper reports a method to learn by not using partial face image but using global face image. Face detection process of this method is performed by describing differences of variance change between edge region and stationary region by gray-scale variation of global face having featured regions including nose, mouse, and couple of eyes. To process the learning stage, we use the input layer obtained by statistical distribution of the featured regions for performing the new physiological neuro-fuzzy algorithm.

Time-Frequency Domain Analysis of Acoustic Signatures Using Pseudo Wigner-Ville Distribution

  • Jeon, Jae-Jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.674-679
    • /
    • 1994
  • Acoustic signal such as speech and scattered sound, are generally a nonstationary process whose frequency contents vary at any instant of time. For time-varying signal, whether a nonstationary or a deterministic transient signal, a traditional frequency domain representation does not reveal the contents of signal characteristics and may lead to erroneous results such as the loss of desired characteristics features or the mis-interpretation for a wrong conclusion. A time-frequency domain representation is needed to characterize such signatures. Pseudo Wigner-Ville distribution (PWVD) is ideally suited for portraying nonstationary signal time-frequency domain and carried out by adapting the fast Fourier transform algorithm. In this paper, the important properties of PWVD were investigated using both stationary and nonstationry signatures by numerical examples PWVD was applied to acoustic sigtnatures to demonstrate its application for time-ferquency domain analysis.

  • PDF

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Estimation of Future Design Flood Under Non-Stationarity for Wonpyeongcheon Watershed (비정상성을 고려한 원평천 유역의 미래 설계홍수량 산정)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Park, Jihoon;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.139-152
    • /
    • 2015
  • Along with climate change, it is reported that the scale and frequency of extreme climate events show unstable tendency of increase. Thus, to comprehend the change characteristics of precipitation data, it is needed to consider non-stationary. The main objectives of this study were to estimate future design floods for Wonpyeongcheon watershed based on RCP (Representative Concentration Pathways) scenario. Wonpyeongcheon located in the Keum River watershed was selected as the study area. Historical precipitation data of the past 35 years (1976~2010) were collected from the Jeonju meteorological station. Future precipitation data based on RCP4.5 were also obtained for the period of 2011~2100. Systematic bias between observed and simulated data were corrected using the quantile mapping (QM) method. The parameters for the bias-correction were estimated by non-parametric method. A non-stationary frequency analysis was conducted with moving average method which derives change characteristics of generalized extreme value (GEV) distribution parameters. Design floods for different durations and frequencies were estimated using rational formula. As the result, the GEV parameters (location and scale) showed an upward tendency indicating the increase of quantity and fluctuation of an extreme precipitation in the future. The probable rainfall and design flood based on non-stationarity showed higher values than those of stationarity assumption by 1.2%~54.9% and 3.6%~54.9%, respectively, thus empathizing the necessity of non-stationary frequency analysis. The study findings are expected to be used as a basis to analyze the impacts of climate change and to reconsider the future design criteria of Wonpyeongcheon watershed.