• Title/Summary/Keyword: Static-Explicit

Search Result 101, Processing Time 0.022 seconds

A Study on Virtual Manufacturing for Total Auto-Body Panel Stamping Processes (차체판넬 스탬핑공정을 위한 가상생산에 관한 연구)

  • Jeong, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1499-1512
    • /
    • 2000
  • The dynamic explicit finite element method and the static implicit finite element method are applied effectively to analyze total auto-body panel stamping processes, which include the forming stage , the trimming stage and the spring-back stage.\The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. On the contrary, the implicit time integration method is better for analyzing spring-back since the complicated contact conditions are removed and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study are presented. Further, the simulated results for the total auto-body panel stamping processes are shown and discussed. The formability and the weld line movement in stamping with Tailor Welded Blanks were investigated through QTR-OTR-FRT.

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

Prediction of Spring Back and Formability in 3-D Stamping by An Explicit Code (Explicit Code에 의한 Stamping시 스프링백 및 성형성 예측)

  • Kim, Heon-Young;Kim, Joong-Jae
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.84-96
    • /
    • 1994
  • Simulation of 3 dimensional large irregularly shaped stamping process by a dynamic approach, based on an explicit time integration scheme, has been shown to be highly efficient and robust in comparison to traditional, implicit, quasi-static ones. The objective of the work is to evaluate the results from explicit code in application to deep drawing of rectangular cup and stamping of automotive front fender, in which deformation, force, thickness distribution are calculated. The method of predicting spring back and formability by and explicit code are suggested and applied to the processes.

  • PDF

The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis (2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용)

  • Jung, Dong-Won;Lee, Seung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

The Critical Phenomena of a Model for the Metabolic Control System with Positive Feedback

  • Kim, Cheol-Ju;Lee, Dong- J.;Shin, Kook-Joe;Lee, Jong-Myung;Ko, Seuk-Beum;Jeon, Il-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.452-458
    • /
    • 1989
  • The static and dynamic phenomena of a model for the metabolic control system with positive feedback are discussed with the static and dynamic renormalization group theory. Then, the explicit results for the static and dynamic exponents are obtained up to the second order of ${\varepsilon}$-expansion, ${\varepsilon}$ being 4-d, where d is the space dimensionality of the system.

Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method (외연적 유한요소법을 이용한 적층제조 공정 중 응력 장 변화 계산)

  • Yang, Seung-Yong;Kim, Jeoung Han
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.318-324
    • /
    • 2020
  • In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Multi-cracking modelling in concrete solved by a modified DR method

  • Yu, Rena C.;Ruiz, Gonzalo
    • Computers and Concrete
    • /
    • v.1 no.4
    • /
    • pp.371-388
    • /
    • 2004
  • Our objective is to model static multi-cracking processes in concrete. The explicit dynamic relaxation (DR) method, which gives the solutions of non-linear static problems on the basis of the steady-state conditions of a critically damped explicit transient solution, is chosen to deal with the high geometric and material non-linearities stemming from such a complex fracture problem. One of the common difficulties of the DR method is its slow convergence rate when non-monotonic spectral response is involved. A modified concept that is distinct from the standard DR method is introduced to tackle this problem. The methodology is validated against the stable three point bending test on notched concrete beams of different sizes. The simulations accurately predict the experimental load-displacement curves. The size effect is caught naturally as a result of the calculation. Micro-cracking and non-uniform crack propagation across the fracture surface also come out directly from the 3D simulations.

Analysis of Hydroforming Process for an Automobile Lower Arm by Using Explicit and Implicit FEM (외연적과 내연적 유한요소법에 의한 자동차 로어암의 하이드로포밍 공정해석)

  • Kim, Jeong;Choi, Han-Ho;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.74-81
    • /
    • 2002
  • Recently tube hydroforming has been widely applied to the automotive industries due to its several advantages over conventional methods. In this paper, attention is paid to comparison of an implicit and an explicit finite element method widely used for numerical simulation of a hydroforming process. For an explicit FEM, a huge amount of computational time is required because of the very small time increment to solve a quasi-static problem. Hence, when an explicit FEM is used fDr a hydroforming process, it is general to convert the real problem to a virtual problem with a different processing time and mass density by appropriate scaling factor. However it is difficult to figure out how large the scaling should be adopted enough to ignore the dynamic effects and maintain the desired accuracy. In this paper, the comparison of the results obtained from both methods focus on the accuracy of the predicted geometrical shape and the stress with various scaling factors which are applied to analyze hydroforming process of an automobile lower arm.