Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.4.318

Computation of Stress Field During Additive Manufacturing by Explicit Finite Element Method  

Yang, Seung-Yong (Korea University of Technology and Education, School of Mechanical Engineering)
Kim, Jeoung Han (Hanbat National University, Department of Materials Science and Engineering)
Publication Information
Journal of Powder Materials / v.27, no.4, 2020 , pp. 318-324 More about this Journal
Abstract
In the present work, an explicit finite element analysis technique is introduced to analyze the thermal stress fields present in the additive manufacturing process. To this purpose, a finite element matrix formulation is derived from the equations of motion and continuity. The developed code, NET3D, is then applied to various sample problems including thermal stress development. The application of heat to an inclusion from an external source establishes an initial temperature from which heat flows to the surrounding body in the sample problems. The development of thermal stress due to the mismatch between the thermal strains is analyzed. As mass scaling can be used to shorten the computation time of explicit analysis, a mass scaling of 108 is employed here, which yields almost identical results to the quasi-static results.
Keywords
Additive manufacturing; Explicit finite element analysis; Stress field; Heat conduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. C. Zienkiewicz and K. Morgan: Finite elements and approximations, Dover Publications, (1983).
2 O. C. Zienkiewcz, R. L. Taylor and P. Nithiarasu: The finite element method for fluid dynamics, 7th ed. Butterworth-Heinemann, (2014).
3 ABAQUS 6.14 User's Guide, Dassault Systemes.
4 S. Y. Yang, B. C. Koo and H. C. Jeong: J. Korean Soc. Railway, 7 (2004) 121.
5 H. Aref and S. Balachandar: A first course in computational fluid dynamics, Cambridge Univ. Press, (2018).
6 N. K. Adomako, S. Noh, C. Oh and S. Yang: Mater. Res. Lett., 7 (2019) 259.   DOI
7 T. Mukherjee, J. S. Zuback, W. Zhang and T. DebRoy: Comp. Mater. Sci., 143 (2018) 325.   DOI
8 T. DebRoy, H. L. Wei, J. S. Zuback, T. Mukherjee, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. De and W. Zhang: Prog. Mater. Sci., 92 (2018) 112.   DOI
9 M. M. Francois, A. Sun, W. E. King, N. J. Henson, D. Tourret, C. A. Bronkhorst, N. N. Carlson, C. K. Newman, T. Haut, J. Bakosi, J. W. Gibbs, V. Livescu, S. A. Vander Wiel, A. J. Clarke, M. W. Schraad, T. Blacker, H. Lim, T. Rodgers, S. Owen, F. Abdeljawad, J. Madison, A. T. Anderson, J. L. Fattebert, R. M. Ferencz, N. E. Hodge, S. A. Khairallah and O. Walton: Curr. Opin. Solid State Mater. Sci., 21 (2017) 198.   DOI
10 T. Mukherjee, W. Zhang and T. DebRoy: Comp. Mater. Sci., 126 (2017) 360.   DOI
11 D. W. Abbot, D. V. V. Kallon, C. Anghel and P. Dube: Proce. Manuf., 35 (2019) 164.
12 O. C. Zienkiewicz, J. Rojek, R. L. Taylor and M. Pastor: Int. J. Num. Methods Engrg., 43 (1998) 565.   DOI