• Title/Summary/Keyword: Static stability

Search Result 1,000, Processing Time 0.024 seconds

Transient Stability Enhancement of Power System by Using Energy Storage System (에너지저장시스템을 이용한 전력계통의 과도안정도 향상)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.26-31
    • /
    • 2017
  • The conventional method of improving the transient stability in a power system is the use of reactive power compensation devices, such as the STATCOM and SVC. However, this traditional method cannot prevent the rapid voltage collapse brought about by the stalling of the motor due to a system fault. On the other hand, the ESS (Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast-acting power compensation provided by an energy storage system plays a significant role in enhancing the transient stability after a major fault in the power system. In this paper, a method of enhancing the transient stability using an energy storage system is proposed for power systems including a dynamic load, such as a large motor. The effectiveness of the energy storage system compared to conventional devices in enhancing the transient stability of the power system is presented. The results of the simulations show that the simultaneous injection of active and reactive power can enhance the transient stability more effectively.

Transient Stability Enhancement of Power System by Using Energy Storage System (풍력터빈 발전기가 연계된 전력계통에서 에너지저장시스템이 과도안정도에 미치는 영향)

  • Seo, Gyu-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.592-597
    • /
    • 2019
  • A conventional method to improve transient stability in power system is the use of reactive power compensation devices such as STATCOM and SVC. However, this traditional method cannot prevent a rapid voltage collapse brought on by motors stalling due to system fault. On the other hand, ESS(Energy Storage System) provides fast-acting, flexible reactive and active power control. The fast active power compensation with energy storage system plays a significant role in transient stability enhancement after a major fault of power system. In this paper, transient stability enhancement method by using energy storage system is proposed for the power system including a dynamic load such as large motor. The effectiveness of energy storage system compared to conventional devices in enhancing transient stability of power system is presented. The results of simulations show that the simultaneous injection of active and reactive power can enhance more effectively transient stability.

Effects of 3D Stabilization Exercise on the Muscle Activity and Static Balance of Patients with Lumbar Instability

  • Kang, Jeong-Il;Choi, Hyun-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.4
    • /
    • pp.181-186
    • /
    • 2017
  • Purpose: The paper presents an intervention for clinical applications in the future by examining the effects of 3D stabilization exercise on patients with lumbar instability, which causes problems in the muscles and balance, and analyzing the effects of balanced lumbar muscles on the static balance. Methods: After collecting samples randomly from thirty patients with lumbar instability, fifteen patients selected for 3D stabilization exercise were placed in the stability group and fifteen patients selected for Swiss ball exercise were placed in the ball exercise group. The intervention program was applied for thirty minutes a session, once a day, three days a week for four weeks. Before the intervention, the lumbar muscle activity and static balance were measured. After four weeks, they were re-measured in the same way and the data were analyzed. Results: In relation to the within-group changes in muscle activity, all groups except for the LEO and REO groups showed significant differences. Regarding the between-group changes in muscle activity depending on the left and right difference, ES, RA, and TrA but not EO showed significant differences. In addition, there were significant differences in the between-group change in static balance. Conclusion: 3D stabilization exercise improves the muscle activity by promoting a balanced posture of lumbar muscles and changing senses, such as a proprioceptor but this had a positive influence on the static balance by controlling the balance of muscles.

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

Resistance and stability evaluation of mobile fish-cage (이동형 수상부유식 가두리의 저항성능과 복원성능 평가)

  • KIM, Hyo-Ju;JEONG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Mobile fish-cage was developed assuming a cage net with an enclosed area, which and estimated the hydrodynamic characteristics of the cage through the model experiment. Flux-shielding plates, installed in the bow were compared with the resistance test carried out by making a hole, bilge keel and stud, and basic block flow rate consisting of the results to a flat surface plate. The experimental results confirmed the improved resistance performance effect of 3~6% in the bilge keel and the stud form. To assess the stability of the fish-cage, evaluation of the stability in accordance with the stability criteria for determining the floating docks had confirmed that it satisfied the static stability performance under operating conditions at sea.

A Study on Voltage Stability Enhancement of Power Systems with STATCOM using Repeated Power Flow Method (반복 조류 계산 기법에 의한 STATCOM 적용 전력시스템의 전압 안정도 향상 연구)

  • Lee, Se-Jung;Lee, Byung-Ha;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.146-148
    • /
    • 2001
  • The STATCOM(Static Compensator) resulted from the FACTS technology can generate or absorb reactive power rapidly so as to increase the transient stability and voltage stability. In this paper, effects of application of the STATCOM to the power system are analyzed from a viewpoint of improving voltage stability. The voltage stability is analyzed by use of repeated power flow method. The IPLAN, which is a high level language used with PSS/E program, is employed for evaluating the voltage stability.

  • PDF

Stability Analysis ant Static Output Feedback Control for switched system (스위칭 시스템을 위한 안정도 분석 및 출력 궤환 제어)

  • Kim, Joo-Won;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.122-125
    • /
    • 2002
  • This paper proposes a stability condition in switched system and then, introduce design method of fuzzy-model-based controller which guarantees the stability. Takagi-Sugeno(75) fuzzy model is employed to design a switching-type fuzzy-model-based ,controller. Furthermore, it is proposed that the design method stabilizing continuous and discrete-time 75 fuzzy model respectively. Each controller in each subspace stabilize the subsystem respectively. In order to guarantee the stability of the global system, it is required to guarantee the stability condition in boundaries with subsystems. The condition which guarantees the stability in boundaries is presented in this paper. Inverted Pendulum system is employed to execute computer simulations. In this computer simulation, the performance of the proposed controller is verified by the control result.

Static stability analysis of graphene origami-reinforced nanocomposite toroidal shells with various auxetic cores

  • Farzad Ebrahimi;Mohammadhossein Goudarzfallahi;Ali Alinia Ziazi
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this paper, stability analysis of sandwich toroidal shell segments (TSSs) with carbon nanotube (CNT)-reinforced face sheets featuring various types of auxetic cores, surrounded by elastic foundations under radial pressure is presented. Two distinct types of auxetic structures are considered for the core, including re-entrant auxetic structure and graphene origami (GOri)-enabled auxetic structure. The nonlinear stability equilibrium equations of the longitudinally shallow shells are formulated using the von Karman shell theory, in conjunction with Stein and McElman approximation while considering Winkler-Pasternak's elastic foundation to simulate the interaction between the shell and elastic foundation. The Galerkin method is employed to derive the nonlinear stability responses of the shells. The numerical investigations show the influences of various types of auxetic-core layers, CNT-reinforced face sheets, as well as elastic foundation on the stability of sandwich shells.

Numerical Analysis for Buried Box Structures during Earthquake (지중 박스구조물의 지진시 거동 해석)

  • 박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.108-115
    • /
    • 2000
  • Numerical analysis of slop stability is presented using seismic displacement, response seismic coefficient, and earthquake response analysis methods. In seismic displacement and response seismic coefficient methods, horizontal static seismic force is considered as 0.2g while vertical static seismic force is not considered in analysis. For earthquake response analysis Hahinoha-wave is applied, It is found from result that analysis using response seismic coefficient method is much more conservative than that using seismic displacement method Also, analysis result using earthquake response analysis method is somewhat less conservative about 25% when compared with that using seismic displacement method.

  • PDF

High Speed TCAM Design using SRAM Cell Stability (SRAM 셀 안정성 분석을 이용한 고속 데이터 처리용 TCAM(Ternary Content Addressable Memory) 설계)

  • Ahn, Eun Hye;Choi, Jun Rim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.19-23
    • /
    • 2013
  • This paper deals with the analysis of 6T SRAM cell stability for Hi-speed processing Ternary Content Addressable Memory. The higher the operation frequency, the smaller CMOS technology required in the designed TCAM because the purpose of TCAM is high-speed data processing. Decrease of Supply voltage is one cause of unstable TCAM operation. Thus, We should design TCAM through analysis of SRAM cell stability. In this paper we propose methodology to characterize the Static Noise Margin of 6T SRAM. All simulations of the TCAM have been carried out in 180nm CMOS process technology.