Browse > Article
http://dx.doi.org/10.12989/gae.2022.29.4.451

Dynamic response of coal and rocks under high strain rate  

Zhou, Jingxuan (Faculty of Safety Engineering, China University of Mining and Technology)
Zhu, Chuanjie (Faculty of Safety Engineering, China University of Mining and Technology)
Ren, Jie (Faculty of Safety Engineering, China University of Mining and Technology)
Lu, Ximiao (Faculty of Safety Engineering, China University of Mining and Technology)
Ma, Cong (Faculty of Safety Engineering, China University of Mining and Technology)
Li, Ziye (Faculty of Safety Engineering, China University of Mining and Technology)
Publication Information
Geomechanics and Engineering / v.29, no.4, 2022 , pp. 451-461 More about this Journal
Abstract
The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.
Keywords
compression strength; dynamic loading; SHPB; strain rate; stress-strain;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 He, M.C., Sousa, L.R.E., Miranda, T. and Zhu, G.L. (2015), "Rockburst laboratory tests database - Application of data mining techniques", Eng. Geol., 185, 116-130. https://doi.org/10.1016/j.enggeo.2014.12.008.   DOI
2 Hokka, M., Black, J., Tkalich, D., Fourmeau, M., Kane, A., Hoang, N.H., Li, C.C. and Chen, W.W. (2016), "Effects of strain rate and confining pressure on the compressive behavior of Kuru granite", Int. J. Impact Eng., 91, 183-193. https://doi.org/10.1016/j.ijimpeng.2016.01.010.   DOI
3 Bieniawski, Z.T. (1968), "Fracture dynamics of rock", Fract. Mech., 4(4), 415-430. https://doi.org/10.1007/BF00186807.   DOI
4 Brown, E.T. and Hoek, E. (1978), "Trends in relationships between measured in-situ stresses and depth", Int. J. Rock. Mech. Min., 15(4), 211-215. https://doi.org/10.1016/0148-9062(78)91227-5.   DOI
5 Chen, S., Yin, D. and Jiang, N. (2019), "Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer", Geomech.Eng., 17(4), 333-342. https://doi.org/10.12989/gae.2019.17.4.333.   DOI
6 Zhang, X.X., Yu, R.C., Ruiz, G. Tarifa, M. and Camara, M.A. (2010), "Effect of loading rate on crack velocities in HSC", Int. J. Impact Eng., 37(4), 359-370. https://doi.org/10.1016/j.ijimpeng.2009.10.002.   DOI
7 Li, J.C., Ma, G.W. and Zhou, Y.X. (2012), "Analytical Study of Underground Explosion-Induced Ground Motion", Rock. Mech. Rock. Eng., 45(6), 1037-1046. https://doi.org/ 10.1007/s00603-011-0200-3.   DOI
8 Li, Y., Zhang, S. and Zhang, B. (2018), "Dilatation characteristics of the coals with outburst proneness under cyclic loading conditions and the relevant applications", Geomech. Eng., 14(5), 459-466. https://doi.org/ 10.12989/gae.2018.14.5.459.   DOI
9 Kolsky, H. (1964), "Stress waves in solids", J. Sound Vib., 1(1), 88-110. https://doi.org/10.1016/0022-460X(64)90008-2.   DOI
10 Yavuz, H., Tufekci, K., Kayacan, R. and Cevizci, H. (2013), "Predicting the Dynamic Compressive Strength of Carbonate Rocks from Quasi-Static Properties", Exp. Mech., 53(3), 367-376. https://doi.org/10.1007/s11340-012-9648-7.   DOI
11 Zhou, Z., Li, X., Ye, Z. and Liu, K. (2010), "Obtaining constitutive relationship for rate-dependent rock in SHPB tests", Rock. Mech. Rock. Eng., 43(6), 697-706. https://doi.org/10.1007/s00603-010-0096-3.   DOI
12 Feng, J., Wang, E. and Shen, R. (2016), "Investigation on energy dissipation and its mechanism of coal under dynamic loads", Geomech. Eng., 11(5), 657-670. https://doi.org/10.12989/gae.2016.11.5.657.   DOI
13 Crespo, M., Rio, G.D. and Rodriguez, J. (2017), "Failure of SLS polyamide 12 notched samples at high loading rates", Theor. Appl. Fract. Mech., 92, 233-239. https://doi.org/10.1016/j.tafmec.2017.08.008.   DOI
14 Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 14(2), 151-159. https://doi.org/10.12989/gae.2018.14.2.000.   DOI
15 Li, Q.M. and Meng, H. (2003), "About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test", Int. J. Solids Struct., 40(2), 343-360. https://doi.org/10.1016/S0020-7683(02)00526-7.   DOI
16 Tao, M., Ma, A., Cao, W., Li, X. and Gong, F. (2017), "Dynamic response of pre-stressed rock with a circular cavity subject to transient loading", Int. J. Rock. Mech. Min., 99, 1-8. https://doi.org/ 10.1016/j.ijrmms.2017.09.003   DOI
17 Li, X.B., Lok, T.S. and Zhao, J. (2005), "Dynamic characteristics of granite subjected to intermediate loading rate", Rock. Mech. Rock. Eng., 38(1), 21-39. https://doi.org/10.1007/s00603-004-0030-7.   DOI
18 Zhu, J.B., Liao, Z.Y. and Tang, C.A. (2016), "Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks Under in situ stresses", Rock. Mech. Rock. Eng., 49(10), 1-12. https://doi.org/ 10.1016/j.ijimpeng.2012.04.002.   DOI
19 Liu, H.Y., Roquete, M. and Kou, S.Q. (2004), "Characterization of rock heterogeneity and numerical verification", Eng. Geol., 72(1-2), 89-119. https://doi.org/10.1016/j.enggeo.2003.06.004.   DOI
20 Davies, E.D.H. and Hunter, S.C. (1963), "The dynamic compression testing of solids by the method of the split Hopkinson pressure bar", Mech. Phys. Solids, 11(3), 155-179. https://doi.org/10.1016/0022-5096(63)90050-4.   DOI
21 Ren, W., Xu, J., Liu, J. and Su, H. (2015), "Dynamic mechanical properties of geopolymer concrete after water immersion", Ceram. Int., 41(9), 11852-11860. https://doi.org/10.1016/j.ceramint.2015.05.154.   DOI
22 Liu, T., Lin, B. and Yang, W. (2017), "Impact of matrix-fracture interactions on coal permeability: Model development and analysis", Fuel, 207, 522-532. https://doi.org/10.1016/j.fuel.2017.06.125.   DOI
23 Meng, Q., Zhang, M., Han, L., Pu, H. and Nie, T. (2016), "Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression", Rock. Mech. Rock. Eng., 49(10), 1-14. https://doi.org/10.1007/s00603-016-1077-y.   DOI
24 Reinhardt, B.H.W. and Cornelissen, H.A.W. (1986), "Tensile tests and failure analysis of concrete", J. Struct. Eng., 112, 2462-2477. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2462).   DOI
25 Tarasov, B.G. (1990), "Simplified method for determining the extent to which strain rate affects the strength and energy capacity of rock fracture", Sov.Min.Sci., 26(4), 315-320. https://doi.org/10.1007/BF02506510.   DOI
26 Wang, J.A. and Park, H.D. (2001), "Comprehensive prediction of rockburst based on analysis of strain energy in rocks", Tunn.Undergr. Sp.Tech., 16(1), 49-57. https://doi.org/10.1016/S0886-7798(01)00030-X.   DOI
27 Liu, K., Zhang, Q.B., Wu, G., Li, JC. and Zhao, J. (2019), "Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar", Rock. Mech. Rock. Eng., (52), 2175-2195. https://doi.org/10.1007/s00603-018-1691-y.   DOI
28 Wang, T., Song, Z. and Yang, J. (2019), "Experimental research on dynamic response of red sandstone soil under impact loads", Geomech.Eng., 17(4), 393-403. https://doi.org/10.12989/gae.2019.17.4.393.   DOI
29 Yao, W., Xu, Y. and Yu, C. (2017), "A dynamic punch-through shear method for determining dynamic Mode II fracture toughness of rocks", Eng. Fract. Mech., 176, 161-177. https://doi.org/10.1016/ j.engfracmech.2017.03.012.   DOI
30 Hogan, J.D., Rogers, R.J., Spray, J.G. and Boonsue, S. (2012), "Dynamic fragmentation of granite for impact energies of 6-28 J", Eng. Fract. Mech., 79, 103-125. https://doi.org/10.1016/j.engfracmech.2011.10.006.   DOI
31 Cai, M. (2008), "Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-Insight from numerical modeling", Int. J. Rock. Mech. Min., 45(5), 763-772. https://doi.org/10.1016/j.ijrmms.2007.07.026.   DOI
32 Abrams, D.A. (1917), "Effect of rate of application of load on the compressive strength of concrete", ASTM J, 17(2), 364-377.
33 Blanton, T.L. (1981), "Effect of strain rates from 10 -2 to 10 sec -1 in triaxial compression tests on three rocks", Int. J. Rock. Mech. Min., 18(1), 47-62. https://doi.org/10.1016/0148-9062(81)90265-5.   DOI
34 Botto, R.E., Cody, G.D., Kirz, J., Ade, H., Behal, S. and Disko, M. (1994), "Selective chemical mapping of coal microheterogeneity by scanning transmission x-ray microscopy", Energ. Fuel., 8(1), 151-154. https://doi.org/10.1021/ef00043a026.   DOI
35 Chakraborty, T., Mishra, S., Loukus, J., Halonen, B. and Bekkala, B. (2016), "Characterization of three Himalayan rocks using a split Hopkinson pressure bar", Int. J. Rock. Mech. Min., 85, 112-118. https://doi.org/10.1016/j.ijrmms.2016.03.005.   DOI
36 Cho, S.H., Ogata, Y. and Kaneko, K. (2003), "Strain-rate dependency of the dynamic tensile strength of rock", Int. J. Rock. Mech. Min., 40(5), 763-777. https://doi.org/10.1016/S1365-1609(03)00072-8.   DOI
37 Read, R.S. (2004), "20 years of excavation response studies at AECL's Underground Research Laboratory", Int. J. Rock. Mech. Min., 41(8), 1251-1275. https://doi.org/10.1016/j.ijrmms.2004.09.012.   DOI
38 Wla, B., Jya, B., Peng, Y., Ming, C., Cza, B., Yi, L. and Li, J. (2012), "Dynamic response of rock mass induced by the transient release of in-situ stress", Int. J. Rock. Mech. Min., 53, 129-141. https://doi.org/ 10.1016/j.ijrmms.2012.05.001   DOI
39 John, R., Shah, S.P. and Jeng, Y.S. (1987), "A fracture mechanics model to predict the rate sensitivity of mode I fracture of concrete", Cement Concr. Res., 17(2), 249-262. https://doi.org/10.1016/0008-8846(87)90108-6.   DOI
40 Li, S., Tang, D.Z., Xu, H. and Yang, Z. (2012), "Advanced characterization of physical properties of coals with different coal structures by nuclear magnetic resonance and X-ray computed tomography", Comput. Geosci., 48(48), 220-227. https://doi.org/10.1016/j.cageo.2012.01.004.   DOI
41 Wang, Q.Z., Li, W. and Song, X.L. (2006), "A Method for Testing Dynamic Tensile Strength and Elastic Modulus of Rock Materials Using SHPB", Pure Appl. Geophys., 163(5-6), 1091-1100. https://doi.org/ 10.1007/s00024-006-0056-8.   DOI
42 Yameogo, S., Corthesy, R. and Leite, M.H. (2013), "Influence of rock failure and damage on in situ stress measurements in brittle rock", Int. J. Rock. Mech. Min., 61, 118-129. https://doi.org/10.1016/j.ijrmms.2013.02.011.   DOI
43 Liu, S. and Xu, J.Y. (2015), "Effect of strain rate on the dynamic compressive mechanical behaviors of rock material subjected to high temperatures", Mech. Mater., 82, 28-38. https://doi.org/10.1016/ j.mechmat.2014.12.006.   DOI
44 Yilmaz, O. and Unlu, T. (2013), "Three-dimensional numerical rock damage analysis under blasting load", Tunn. Under. Sp. Tech., 38, 266-278. https://doi.org/ 10.1016/j.tust.2013.07.007.   DOI
45 Zhu, C.J., Lin, B.Q., Jiang, B.Y., Liu, Q. and Sun, Y.M. (2013), "Multiphase destructive effects of shock wave resulting from coal mine gas explosion", J. China. U. Min. Techno., 42(5), 718-724+730. https://doi.org/10.13247/j.cnki.jcumt.2013.05.003.   DOI
46 Frew, D.J., Forrestal, M.J. and Chen, W. (2001), "A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials", Exp. Mech., 41(1), 40-46. https://doi.org/10.1007/ BF02323102.   DOI
47 Demirdag, S., Tufekci, K., Kayacan, R., Yavuz, H. and Altindag, R. (2010), "Dynamic mechanical behavior of some carbonate rocks", Int. J. Rock. Mech. Min., 47(2), 307-312. https://doi.org/10.1016/ j.ijrmms.2009.12.003.   DOI
48 Erarslan, N. and Williams, D.J. (2012), "The damage mechanism of rock fatigue and its relationship to the fracture toughness of rocks", Int. J. Rock. Mech. Min., 56, 15-26. https://doi.org/10.1016/ j.ijrmms.2012.07.015..   DOI
49 Field, J.E., Walley, S.M., Proud, W.G., Goldrein, H.T. and Siviour, C.R. (2004), "Review of experimental techniques for high rate deformation and shock studies", Int. J. Impact Eng., 30(7), 725-775. https://doi.org/10.1016/j.ijimpeng.2004.03.005.   DOI
50 Gama, B.A., Lopatnikov, S.L. and Gillespie, J.W. (2004), "Hopkinson bar experimental technique: A critical review", Appl. Mech.Rev., 57(4), 223. https://doi.org/10.1115/1.1704626.   DOI