• Title/Summary/Keyword: Static pile

Search Result 236, Processing Time 0.018 seconds

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • 이진수;장용채;김용걸
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.197-203
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also in cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : A a result of estimate the reliability in criterion of the Davisson method, in was showed that Terzaghi & Peck > Chin > Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable , time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering News. Modified Engineering News. Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program ) analysis for relation, respectively, $Q_{u(Restrike)}$ $Q_{u(EOID)}$ = 0.971 $t_{0.1}$, 0.968 $t_{0.1}$, 1.192 $t_{0.1}$, 0.88 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$

  • PDF

Hysteretic behaviors of pile foundation for railway bridges in loess

  • Chen, Xingchong;Zhang, Xiyin;Zhang, Yongliang;Ding, Mingbo;Wang, Yi
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.323-331
    • /
    • 2020
  • Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.

Reliability analysis of piles based on proof vertical static load test

  • Dong, Xiaole;Tan, Xiaohui;Lin, Xin;Zhang, Xuejuan;Hou, Xiaoliang;Wu, Daoxiang
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.487-496
    • /
    • 2022
  • Most of the pile's vertical static load tests in construction sites are the proof load tests, which is difficult to accurately estimate the ultimate bearing capacity and analyze the reliability of piles. Therefore, a reliability analysis method based on the proof load-settlement (Q-s) data is proposed in this study. In this proposed method, a simple ultimate limit state function based on the hyperbolic model is established, where the random variables of reliability analysis include the model factor of the ultimate bearing capacity and the fitting parameters of the hyperbolic model. The model factor M = RuR / RuP is calculated based on the available destructive Q-s data, where the real value of the ultimate bearing capacity (RuR) is obtained by the complete destructive Q-s data; the predicted value of the ultimate bearing capacity (RuP) is obtained by the proof Q-s data, a part of the available destructive Q-s data, that before the predetermined load determined by the pile test report. The results demonstrate that the proposed method can easy and effectively perform the reliability analysis based on the proof Q-s data.

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Calculation of Base Load Capacity of Bored Pre-cast Piles Using New PHC PIles with Steel Pipe at Pile Toe (강관 부착 PHC파일로 시공된 매입말뚝의 선단지지력 산정)

  • Paik, Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.9
    • /
    • pp.5-16
    • /
    • 2016
  • New PHC piles, where short steel pipes are attached to the pile toe, are developed to increase the base load capacity of bored pre-cast piles embedded in weathered rock. In this study, new bored pre-cast piles using the new PHC piles are installed at 7 test sites with different soil conditions, and static and dynamic pile load tests are performed to investigate quantitative characteristics on the base load capacity of new bored pre-cast piles. In addition, based on the static pile load test results, a new empirical equation for estimating the base load capacity of new bored pre-cast piles is proposed. A comparison between predicted and measured base load capacities shows that the proposed empirical equation produces conservative predictions for the new bored pre-cast piles. However, the existing design criterion significantly underestimates the base load capacity of new bored pre-cast piles.

Numerical Evaluation of Skin Friction of Barrette Piles by Aspect Ratio and Soil Strength Changes (바렛말뚝의 형상비와 지반 강성에 따른 주면마찰력의 수치해석적 평가)

  • Chae-Min, Kim;Byeong-Han, Jeon;Jun-Seo, Jeon;Tae-Hyung, Kim;Jeong-Pyo, Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2022
  • In this study, the effect of aspect ratio and soil strength on the skin friction for barrette pile was evaluated using numerical analysis. The back analysis was conducted to obtain the friction coefficient between pile and soil using the experimental results of the static pile load test for the barrette pile installed at OOsite in Busan. A total of 36 simulations for the static pile load test were also conducted with respect to various aspect ratios and soil strengths. It was found that the skin friction increases as the aspect ratio increases and the change in increasing rate was remarkable near the ultimate skin friction. In addition, the effect of aspect ratio on the skin friction was investigated when the strength of soil at pile tip was varied.

CASE STUDIES ON THE CONSTRUCTION CONTROL OF FILE FOUNDATION BY PILE DRIVING ANALYZER (항타분석기에 의한 말뚝시공관리 사례)

  • 이우진;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.79-86
    • /
    • 1994
  • Two case studies on the application of Pile Driving Analyzer (PDA) are introduced. It is shown that the PDA and CAPWAP are effective tools for the construction control of pile foundations with minimum cost and time. The PDA and CAPWAP techniques are able to evaluate the performace of hammer and driving system: to check the stresses in the pile due to driving: to determine the damage of pile: to predict the ultimate bearing capacity of pile: to estimate the important soil paramaters such as the soil resistance, quake, and damping etc.: and to provide the load - displacement curve from the simulated static load test. Theoretical backgrounds of wave mechanics is briefly reviewed and the methodology of construction control using the PDA is also discussed.

  • PDF

Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 -)

  • Lee, Wonje;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.29-36
    • /
    • 2019
  • Axial compressive failure loads ($P_n$) of diameter 500 mm and diameter 600 mm A type PHC pile were calculated as 7.7 MN and 10.6 MN, respectively. In the static pile load tests, the maximum axial compressive loads of the above 2 kinds of A type pile were measured as 6.9 MN and 8.8 MN respectively, therefore these measured maximum loads were at the level of 90% and 83% of $P_n$ respectively. Long-term allowable axial compressive loads ($P_a$) of the above 2 kinds of A type pile were 1.7 MN and 2.3 MN respectively. From the bi-directional pile load test data on the prebored PHC piles, it was confirmed that the allowable axial compressive bearing resistance was estimated as 131% of the long-term allowable compressive load of the PHC pile and showed higher than the allowable bearing capacity calculated by the current design method. Therefore, it has been verified that the PHC pile can be used up to the maximum long-term allowable compressive load, and it is suggested that the ultimate pile capacity formula used in the current design for prebored PHC piles should be improved to accommodate the actual capacity.

Dynamic Analysis of Inclined Piles and Countermeasures against their Vulnerability (경사말뚝의 동적거동과 내진성능 향상을 위한 실험적 고찰)

  • 김재홍;황재익;김성렬;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.107-114
    • /
    • 2001
  • When group pile supporting structures are to be subjected to large lateral loads, generally, hatter piles are used in group pile with vertical piles. It is well known that batter piles resist lateral static loads which are acted upon the piles as axial farces quite well but, they show a poor performance under seismic loads. However, it is not yet known how the batter piles behave under dynamic loading and how to strengthen the batter piles to improve the seismic performance. Shaking table tests were performed to investigate the seismic behavior of the batter pile and to bring up the countermeasures to improve the seismic performance. As the result of the shaking table tests, batter piles failed due to not only the excessive increase of compressive force near the pile head but also that of tensile force. In case that the pile head was connected with pile cap by rubber joint, the max. acceleration at the pile cap was reduced due to the high damping ratio of rubber and the max. moment and max. axial farce at the pile head was decreased remarkably. When the inclinations(V:H) of the batter pile were 8:3 and 8:4, max. moment, max. shear force, and max. axial farce were reduced notably and max. acceleration and max. displacement at the pile cap was diminished, too.

  • PDF

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.