Browse > Article
http://dx.doi.org/10.12989/gae.2020.20.4.323

Hysteretic behaviors of pile foundation for railway bridges in loess  

Chen, Xingchong (School of Civil Engineering, Lanzhou Jiaotong University)
Zhang, Xiyin (School of Civil Engineering, Lanzhou Jiaotong University)
Zhang, Yongliang (School of Civil Engineering, Lanzhou Jiaotong University)
Ding, Mingbo (School of Civil Engineering, Lanzhou Jiaotong University)
Wang, Yi (School of Civil Engineering, Lanzhou Jiaotong University)
Publication Information
Geomechanics and Engineering / v.20, no.4, 2020 , pp. 323-331 More about this Journal
Abstract
Pile foundation is widely used for railway bridges in loess throughout northwestern China. Modeling of the loess-pile interaction is an essential part for seismic analysis of bridge with pile foundation at seismically active regions. A quasi-static test is carried out to investigate the hysteretic behaviors of pile foundation in collapsible loess. The failure characteristics of the bridge pile-loess system under the cyclic lateral loading are summarized. From the test results, the energy dissipation, stiffness degradation and ductility of the pile foundation in loess are analyzed. Therefore, a bilinear model with stiffness degradation is recommended for the nonlinearity of the bridge pier-pile-loess system. It can be found that the stiffness of the bridge pier-pile-loess system decreases quickly in the initial stage, and then becomes more slowly with the increase of the displacement ductility. The equivalent viscous damping ratio is defined as the ratio of the dissipated energy in one cycle of hysteresis curves and increases with the lateral displacement.
Keywords
high-speed railway bridges; pile foundation; hysteretic behaviors; loess; loess-pile interaction;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Toma Sabbagh, T., Al-Salih, O. and Al-Abboodi, I. (2019), "Experimental investigation of batter pile groups behaviour subjected to lateral soil movement in sand", Int. J. Geotech. Eng., 1-12. https://doi.org/10.1080/19386362.2019.1585596.
2 Wang, L., Wu, Z., Xia, K., Liu, K., Wang, P., Pu, X. and Li, L. (2018), "Amplification of thickness and topography of loess deposit on seismic ground motion and its seismic design methods", Soil Dyn. Earthq. Eng., 126. https://doi.org/10.1016/j.soildyn.2018.02.021.
3 Wang, X., Ye, A., He, Z. and Shang, Y. (2016), "Quasi-static cyclic testing of elevated RC pile-cap foundation for bridge structures", J. Bridge Eng., 21(2), 04015042. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000797.   DOI
4 Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", Int. J. Numer. Anal. Meth. Geomech., 26(14), 1385-1406. https://doi.org/10.1002/nag.250.   DOI
5 Yang, Z. and Jeremic, B. (2005), "Study of soil layering effects on lateral loading behavior of piles", J. Geotech. Geoenviron. Eng., 131(6), 762-770. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:6(762).   DOI
6 Zhang, X.R. and Yang, Z.J. (2018), "Numerical analyses of pile performance in laterally spreading frozen ground crust overlying liquefiable soils", Earthq. Eng. Eng. Vib., 17(3), 491-499. https://doi.org/10.1007/s11803-018-0457-6.   DOI
7 Cai, Y.X., Gould, P.L. and Desai, C.S. (2000), "Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application", Eng. Struct., 22(2), 191-199. https://doi.org/10.1016/S0141-0296(98)00108-4.   DOI
8 Ahmadi, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete 23(1), 1-10. https://doi.org/10.12989/cac.2019.23.1.001.   DOI
9 Bhowmik, T., Tan, K.H. and Balendra, T. (2017), "Lateral load-displacement response of low strength CFRP-confined capsule-shaped columns", Eng. Struct., 150, 64-75. https://doi.org/10.1016/j.engstruct.2017.07.037.   DOI
10 Biswas, S., Manna, B. and Choudhary, S.S. (2013), "Prediction of nonlinear characteristics of soil-pile system under vertical vibration", Geomech. Eng., 5(3), 223-240. https://doi.org/10.12989/gae.2013.5.3.223.   DOI
11 Chanda, D., Saha, R. and Haldar, S. (2019), "Influence of inherent soil variability on seismic response of structure supported on pile foundation", Arab. J. Sci. Eng., 44(5), 5009-5025. https://doi.org/10.1007/s13369-018-03699-1.   DOI
12 Dehghanpoor, A., Thambiratnam, D., Chan, T., Taciroglu, E., Kouretzis, G. and Li, Z. (2019), "Coupled horizontal and vertical component analysis of strong ground motions for soil-pile-superstructure systems: Application to a bridge pier with soil-structure interaction", J. Earthq. Eng., 1-29. https://doi.org/10.1080/13632469.2019.1625829.
13 Hutchinson, T.C., Chai, Y.H., Boulanger, R.W. and Idriss, I.M. (2004), "Inelastic seismic response of extended pile-shaft-supported bridge structures", Earthq. Spect., 20(4), 1057-1080. https://doi.org/10.1193%2F1.1811614.   DOI
14 Gao, X.J., Wang, J.C. and Zhu, X.R. (2007), "Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation", J. Zhejiang Univ. Sci. A, 8(7), 1110-1117. https://doi.org/10.1631/jzus.2007.A1110.   DOI
15 Gazetas, G., Tazoh, T., Shimizu, K. and Fan, K. (1993), "Seismic response of the pile foundation of Ohba-Ohashi bridge", Proceedings of the 3rd International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, U.S.A., June.
16 Gerolymos, N., Drosos, V. and Gazetas, G. (2009), "Seismic response of single-column bent on pile: Evidence of beneficial role of pile and soil inelasticity", Bull. Earthq. Eng., 7(2), 547. https://doi.org/10.1007/s10518-009-9111-z.   DOI
17 Grigoryan, A.A. (1991), "Construction on loess soils", Soil Mech. Found. Eng., 28(1), 44-49. https://doi.org/10.1007/BF02304644.   DOI
18 Han, Q., Du, X., Zhou, Y. and Lee, G.C. (2013), "Experimental study of hollow rectangular bridge column performance under vertical and cyclically bilateral loads", Earthq. Eng. Eng. Vib., 12(3), 433-445. https://doi.org/10.1007/s11803-013-0184-y.   DOI
19 Ingham, T.J., Rodriguez, S., Donikian, R. and Chan, J. (1999), "Seismic analysis of bridges with pile foundations", Comput. Struct., 72(1-3), 49-62. https://doi.org/10.1016/S0045-7949(99)00021-8.   DOI
20 Ju, S.H. (2013), "Determination of scoured bridge natural frequencies with soil-structure interaction", Soil Dyn. Earthq. Eng., 55, 247-254. https://doi.org/10.1016/j.soildyn.2013.09.015.   DOI
21 Kaynia, A.M. and Mahzooni, S. (1996), "Forces in pile foundations under seismic loading", J. Eng. Mech., 122(1), 46-53. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:1(46).   DOI
22 Makris, N., Badoni, D., Delis, E. and Gazetas, G. (1994), "Prediction of observed bridge response with soil-pile-structure interaction", J. Struct. Eng., 120(10), 2992-3011. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:10(2992).   DOI
23 Kim, Y. and Choi, J. (2017), "Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results", Geomech. Eng., 12(2), 239-255. https://doi.org/10.12989/gae.2017.12.2.239.   DOI
24 Liyanapathirana, D.S. and Poulos, H.G. (2005), "Pseudostatic approach for seismic analysis of piles in liquefying soil", J. Geotech. Geoenviron. Eng., 131(12),1480-1487. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:12(1480).   DOI
25 Maheshwari, B.K., Truman, K.Z., El Naggar, M.H. and Gould, P.L. (2004), "Three-dimensional nonlinear analysis for seismic soil-pile-structure interaction", Soil Dyn. Earthq. Eng., 24(4), 343-356. https://doi.org/10.1016/j.soildyn.2004.01.001.   DOI
26 Taheri, A., Moghadam, A.S. and Tasnimi, A.A. (2017), "Critical factors in displacement ductility assessment of high-strength concrete columns", Int. J. Adv. Struct. Eng., 9(4), 325-340. https://doi.org/10.1007/s40091-017-0169-6.   DOI
27 Mei, Y., Hu, C., Yuan, Y., Wang, X. and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.   DOI
28 Mylonakis, G. and Nikolaou, A. (1997), "Soil-pile-bridge seismic interaction: Kinematic and inertial effects. Part I: Soft soil", Earthq. Eng. Struct. Dyn., 26, 337-359. https://doi.org/10.1002/(SICI)1096-9845(199703)26:3%3C337::AID-EQE646%3E3.0.CO;2-D.   DOI
29 Shi, J., Zhang, Y., Chen, L. and Fu, Z. (2018), "Response of a laterally loaded pile group due to cyclic loading in clay", Geomech. Eng., 16(5), 463-469. https://doi.org/10.12989/gae.2018.16.5.463.   DOI