• Title/Summary/Keyword: Static pile

Search Result 236, Processing Time 0.021 seconds

Evaluating the impacts of using piles and geosynthetics in reducing the settlement of fine-grained soils under static load

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.87-101
    • /
    • 2020
  • The construction of combined pile-raft foundations is considered as the main option in designing foundations in high-rise buildings, especially in soils close to the ground surface which do not have sufficient bearing capacity to withstand building loads. This paper deals with the geotechnical report of the Northern Fereshteh area of Tabriz, Iran, and compares the characteristics of the single pile foundation with the two foundations of pile group and geogrid. Besides, we investigate the effects of five principal parameters including pile diameter and length, the number of geogrid layers, the depth of groundwater level, and pore water pressure on vertical consolidation settlement and pore water pressure changes over a year. This study assessed the mechanism of the failure of the soil under the foundation using numerical analysis as well. Numerical analysis was performed using the two-dimensional finite element PLAXIS software. The results of fifty-four models indicate that the diameter of the pile tip, either as a pile group or as a single pile, did not have a significant effect on the reduction of the consolidation settlement in the soil in the Northern Fereshteh Street region. The optimum length for the pile in the Northern Fereshteh area is 12 meters, which is economically feasible. In addition, the construction of four-layered ten-meter-long geogrids at intervals of 1 meter beneath the deep foundation had a significant preventive impact on the consolidation settlement in clayey soils.

Evaluation of Pile Bearing Capacity and Scale Effect Using Model Pile Test (모형실험을 통한 말뚝지지력의 평가 및 치수효과의 비교분석)

  • 이인모;이정학
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.37-44
    • /
    • 1993
  • Model pile tests in calibration chamber are performed in order to study the two factors that the pile bearing capacity is significantly influenced by. Those factors are the critical depth concept and the scale effect caused by pile diameters. Firstly, the predicted values of end bearing capacity from the various static formulae were compared with the measured ones from model pile tests. Secondly, the critical depth concept and the scale effect were investigated by using two different soil conditions in a series of calibration chamber tests : the one is uniform sand : and the other is weathered granites overlayered by sand. Main results obtained from the model tests can be summarized as follows : (1) The end bearing capacity was increased with pile penetration depth up to penetration ratio of 7 to 8 when the cell pressure is high, and the critical depth was observed in the current chamber tests with uniform sand layer , (2) The predicted end bearing capacities were mostly lager than the measured, and it was found that the differences between the predicted and the measured values became smaller as the pile penetration ratio was increased : (3) The end bearing capacity of the small diameter pile in weathered granites layer was mostly less than that of the larger pile, while in uniform sand layer it was vice.

  • PDF

A Study on the Vertical Bearing Capacity of Batter Piles Subjected to Vertical Load (연직하중을 받는 경사말뚝의 연직지지력에 관한 연구)

  • 성인출;이민희;최용규;권오균
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.49-55
    • /
    • 2003
  • In this study, based on the relationship of the vertical force - settlement of batter piles obtained by pressure chamber model tests, the vertical bearing capacity of vertical and batter piles according to the increase of pile inclination was analyzed. A model open - ended steel pipe pile with the inclination of 5$^\circ$, 10$^\circ$ and 15$^\circ$ was driven into saturated fine sand with relative density of 50 %, and the static compression load tests were performed under each confining pressure of 35, 70 and 120 kPa in pressure chamber. The vertical bearing capacity of pile obtained from pressure chamber tests increased with the pile inclination. In the case of the inclination of 5$^\circ$, 10$^\circ$, 15$^\circ$, increasing ratios of pile bearing capacity were 111, 121, 127 ~ 140 % of vertical bearing capacity respectively. In the case of the inclination of above 20$^\circ$, the model tests could not be performed because of pile of pile head during compressive loading on the pile head.

Estimation of End Bearing Capacity of SDA Augered Piles on Various Hearing Stratums (지지지반의 종류별 SDA매입말뚝의 선단지지력 산정)

  • Hong, Won-Pyo;Chai, Soo-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.111-129
    • /
    • 2007
  • The standard construction manual of the SDA(Separated Doughnut Auger) piling method was proposed so that the resisting capacity of the augered piles could work effectively. 405 dynamic pile load tests and 30 static pile load tests were performed for 265 test piles, which were installed by the SDA piling method in 33 sites in Korea. The results of the pile load tests showed that the end bearing capacity of the SDA augered piles depended on the property of various soil stratums and did not agree with ones estimated by the existing formula based on several standard design codes. On the basis of the pile load test results, four formulas were presented according to bearing stratums to estimate quantitatively the unit end bearing capacity of the SDA augered piles. The formulas for the unit end bearing capacity of piles on soils or weathered rocks were related to N-value given by SPT(Standard Penetration Test), while the unit end bearing capacity on bedrock was suggested to be more than 1500 $tf/m^2$. The presented formulas were compared with the existing formulas, which were presented by several standard design codes to design the augered piles. In order to use correctly the presented formulas, the quality of Standard Penetration Test should be controlled precisely. Also it is desirable to choose a pilot construction site, where both dynamic and static pile load tests are performed.

A Comparative Study on Results of Static Pile Load Test of Rock Socketed Drilled Shaft and Bearing Capacity Equations (암반에 근입된 현장타설말뚝의 정재하시험결과와 지지력이론식의 비교)

  • Kim, Won-Cheul;Hwang, Young-Cheol;Hwang, Sung-Sik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.51-58
    • /
    • 2002
  • In Korea, drilled shaft are generally socketed into rock. Driven pile has environmental problems such as vibration and noise, therefore, the applications of the drilled shaft are increasing in Korea. In this paper, static load test data of the rock socketed drilled shaft at Gwangandaero and Suyeong3hogyo are analyzed. The bearing capacities from field test data and theoretical formula are compared and analyzed. From this study, design approaches for drilled shafts in Korea are examined and several suggestions are proposed.

  • PDF

Bearing Capacity of Model Open -Ended Steel Pipe Pile Driven into Sand Deposit (모래지반에 타입된 모형 개단강관 말뚝의 지지력 분석)

  • Baek, Gyu-Ho;Lee, Jong-Seop;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Model tests in calibration chamber with open -ended steel pipe pile have been performed in sand deposit to clarify effect of soil plug on bearing capacity, load transfer mechanisms in soil plug, and behavior of soil plug under dynamic and static conditions. Model piles were devised so that bearing capacity of open -ended pile could be measured separately into outside skin friction, inside skin friction due to soil plug -pile interaction and end bearing force on the section of steel pipe pile. It may be concluded, form the test results, that the plugging level of open -ended pile is more correctily defined by specific recovery ratio, y, rather than by plug length ratio, PLR, and the major part of inside skin friction is generated within the range of three times as long as the inner diameter of the pile from the pile tip. The ratio of inside skin friction to total bearing capacity is much larger than that of outside skin friction to total bearing capacity. Therefore, the bearing capacity of pile could not be well predicted, unless the inside skin friction is properly taken into account.

  • PDF

Model Test of O-Cell Pile Load Test with Variable End Plate (가변선단재하판을 이용한 양방향말뚝재하시험의 모형실험)

  • Joo, Yong-Sun;Kim, Nak-Kyung;Kim, Sung-Kyu;Kim, Ung-Jin;Park, Jong-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.476-481
    • /
    • 2009
  • Bi-directional load test is one of O-cell tests. The O-cell test is a system which may be used for performing static load tests on cast in situ reinforced concrete bored piles. The technique was devised and developed by Osterberg of Northwestern University(USA) and has been in use around the world. The principle of the method is that an O-cell is installed in a cast in situ bored pile base. Once the pile concrete reaches its design strength the cell is connected to an hydraulic pump and pressured. Pressurization causes the cell to expand, developing an upward force on the section of pile above the cell loads, pile movements and strains within the pile then enable the capacity of the pile and its load settlement curves to be ascertained. The O-cell pile load test with variable end plate is operated on second steps - the first step is to confirming end bearing capacity with variable end plate and the second step is similar to the conventional O-cell test. In the study, To calculate ultimate capacity of bi-directional load test using model with the pile with variable end plate O-cell.

  • PDF

Study on Development of the Bi-directional High Pressure Pile Load Test(BDH PLT) and Its Application (양방향 고유압 말뚝재하시험(BDH PLT)의 개발 및 적용성에 관한 연구)

  • Lee, Chung-Sook;Lee, Min-Hee;Kim, Sang-Il;Choi, Yong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.23-36
    • /
    • 2007
  • To overcome the limits of the static pile load test for large diameter drilled shafts, bi-directional low pressure pile load test (BDL PLT) has been used but this test method containes some problems that has not been solved basically. That is, BDL PLT has some problems: difficulty in jack (or cell) arrangement for large test capacity, void remain inside jack (or cell) due to the unrecovery of piston after test etc. In this study, bi-directional double-acting high pressure pile load test (BDH PLT W/DOJ) was developed and confirmed for a in-situ large diameter drilled shaft. At present, test specification of bi-directional pile load test (BDPLT) is being made, and severed main issues (such as, test kinds, test capacity, necessity of use of double-acting and attention of application to service pile) will be contained at the specification.

Numerical Analysis for High-rise Building Foundation and Further Investigations on Piled Raft Design

  • Won, Jinoh;Lee, Jin Hyung;Cho, Chunwhan
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.271-281
    • /
    • 2015
  • This paper introduces detailed three-dimensional numerical analyses on a bored pile foundation for a high-rise building. A static load test was performed on a test pile and a numerical model of a single pile, which was calibrated by comparing it with the test result. The detailed numerical analysis was then conducted on the entire high-rise building foundation. Further study focused on soil pressures under the base slab of a piled raft foundation. Total seven cases with different pile numbers and raft-soil contact conditions were investigated. The design criteria of a foundation, especially settlement requirement were satisfied even for the cases with fewer piles under considerable soil pressure beneath the base slab. The bending moment for the structural design of the base slab was reduced by incorporating soil pressures beneath the base slab along with bored piles. Through the comparative studies, it was found that a more efficient design can be achieved by considering the soil pressure beneath the slab.

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF