• 제목/요약/키워드: Static load analysis

검색결과 1,309건 처리시간 0.034초

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.

디스크 받침용 고무패드의 거동 및 강성추정 (The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing)

  • 조성철;최은수;박주남;김만철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

CAE 해석 기반 내구도 평가 방법에 대한 연구 (Study on the durability assessment based on CAE analysis)

  • 주병현;남기원;이병채
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.844-848
    • /
    • 2004
  • We evaluate the durability of vehicle chassis component under dynamic loadings. Since the fatigue analysis of vehicle component is based on the dynamic load history it must be done by dynamic analysis. But in case the vehicle component has natural frequencies much larger than reversing frequencies of load history, we can get small analysis errors by applying quasi-static analysis. So it is inefficient that we apply to the dynamic analysis for all the vehicle components. In this research, we discuss the quasi-static analysis method which is appropriate for the fatigue analysis. And in case we can only perform the fatigue analysis based on dynamic analysis, we introduce more efficient method in the analysis time and hard disk storage.

  • PDF

등가정하중을 이용한 유연다물체 동역학계의 구조최적설계 (Optimization of Flexible Multibody Dynamic Systems Using Equivalent Static Load Method)

  • 강병수;박경진
    • 대한기계학회논문집A
    • /
    • 제28권1호
    • /
    • pp.48-54
    • /
    • 2004
  • Generally, structural optimization is carried out based on external static loads. All forces have dynamic characteristics in the real world. Mathematical optimization with dynamic loads is extremely difficult in a large-scale problem due to the behaviors in the time domain. In practical applications, it is customary to transform the dynamic loads into static loads by dynamic factors, design codes, and etc. But the optimization results with the unreasonably transformed loads cannot give us good solutions. Recently, a systematic transformation has been proposed as an engineering algorithm. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. Thus, many load cases are used as the multiple loading conditions which are not costly to include in modem structural optimization. In this research, the proposed algorithm is applied to the optimization of flexible multibody dynamic systems. The equivalent static load is derived from the equations of motion of a flexible multibody dynamic system. A few examples that have been solved before are solved to be compared with the results from the proposed algorithm.

An efficient method for universal equivalent static wind loads on long-span roof structures

  • Luo, Nan;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.493-506
    • /
    • 2017
  • Wind-induced response behavior of long-span roof structures is very complicated, showing significant contributions of multiple vibration modes. The largest load effects in a huge number of members should be considered for the sake of the equivalent static wind loads (ESWLs). Studies on essential matters and necessary conditions of the universal ESWLs are discussed. An efficient method for universal ESWLs on long-span roof structures is proposed. The generalized resuming forces including both the external wind loads and inertial forces are defined. Then, the universal ESWLs are given by a combination of eigenmodes calculated by proper orthogonal decomposition (POD) analysis. Firstly, the least squares method is applied to a matrix of eigenmodes by using the influence function. Then, the universal ESWLs distribution is obtained which reproduces the largest load effects simultaneously. Secondly, by choosing the eigenmodes of generalized resuming forces as the basic loading distribution vectors, this method becomes efficient. Meanwhile, by using the constraint equations, the universal ESWLs becomes reasonable. Finally, reproduced largest load effects by load-response-correlation (LRC) ESWLs and universal ESWLs are compared with the actual largest load effects obtained by the time domain response analysis for a long-span roof structure. The results demonstrate the feasibility and usefulness of the proposed universal ESWLs method.

정적재하시험을 통한 장경간 중공 웨브 PSC 거더교의 내하력 평가 (Evaluation of the Load Carrying Capacity of Existing Bridges with Long Span Hollow Web Prestressed Concrete Girder by Static Load Test)

  • 김성겸;장판기;장일영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.97-102
    • /
    • 2018
  • 기존 PSC I형 거더는 콘크리트의 자중, 정착구 및 긴장방식 등의 영향으로 장경간화의 적용성이 불리하였다. 이를 극복하기 위하여 PSC 거더의 복부에 중공을 도입하고 다단계 긴장을 도입함으로써 50~70m 경간에 적용 가능한 중공 웨브 PSC I형 거더를 개발하고 실교량으로 시공하였다. 본 연구는 중공 웨브 PSC I형 거더교 현장에서 정적재하시험을 통하여 계측을 한 결과와 대상 구조물의 유한요소해석 결과를 바탕으로 비교, 분석하여 중공 웨브 장경간 PSC 거더교의 공용내하력과 안전성을 평가하였다. 본 교량의 정적재하시험과 수치해석 결과가 유사하게 나타났으며 중공 웨브 PSC I형 거더의 거동을 잘 모사하는 것으로 나타났다. 교량의 모든 거더는 설계 활하중 하에서 충분한 내하력을 확보하는 것으로 평가되었고 안전성을 확보하여 시공 결과의 적절성을 확인하였다.

노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구 (Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests)

  • 문성호
    • 한국도로학회논문집
    • /
    • 제19권1호
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

평균 응력을 고려한 음향 하중을 받는 항공기 센서 포드 외피 구조의 내구 수명 분석 (Fatigue Life Prediction for the Skin Structures of Aircraft Sensor Pod Under Acoustic Load with Mean Stress)

  • 전민혁;김연주;조현준;이미연;김인걸;이한솔;조재명;배종인;박기영
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2023
  • The skin structure of sensor pod mounted on the exterior of aircraft can be exposed to the acoustic dynamic load and static load such as aerodynamic pressure and inertial load during flight. Fatigue life prediction of structural model under acoustic load should be performed and also differential stiffness of model modified by static load should be considered. The acoustic noise test spectrum of MIL-STD-810G was applied to the structural model and the stress response power spectral density (PSD) was calculated. The frequency response analysis was performed with or without prestress induced by inplane static load, and the response spectrum was compared. Time series data was generated using the calculated PSD, and the time and frequency domain fatigue life were predicted and compared. The variation of stress response spectrum due to static load and predicted fatigue life according to the different structural model considering mean stress were examined and decreasing fatigue life was observed in the model with prestress of compressive static load.

Buckling characteristics and static studies of multilayered magneto-electro-elastic plate

  • Kiran, M.C.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.751-763
    • /
    • 2017
  • This article deals with the buckling behaviour of multilayered magneto-electro-elastic (MEE) plate subjected to uniaxial and biaxial compressive (in-plane) loads. The constitutive equations of MEE material are used to derive a finite element (FE) formulation involving the coupling between electric, magnetic and elastic fields. The displacement field corresponding to first order shear deformation theory (FSDT) has been employed. The in-plane stress distribution within the MEE plate existing due to the enacted force is considered to be equivalent to the applied in-plane compressive load in the pre-buckling range. The same stress distribution is used to derive the potential energy functional. The non-dimensional critical buckling load is accomplished from the solution of allied linear eigenvalue problem. Influence of stacking sequence, span to thickness ratio, aspect ratio, load factor and boundary condition on critical buckling load and their corresponding mode shape is investigated. In addition, static deflection of MEE plate under the sinusoidal and the uniformly distributed load has been studied for different stacking sequences and boundary conditions.

Fluctuating wind loads across gable-end buildings with planar and curved roofs

  • Ginger, J.D.
    • Wind and Structures
    • /
    • 제7권6호
    • /
    • pp.359-372
    • /
    • 2004
  • Wind tunnel model studies were carried out to determine the wind load distribution on tributary areas near the gable-end of large, low-rise buildings with high pitch planar and curved roof shapes. Background pressure fluctuations on each tributary area are described by a series of uncorrelated modes given by the eigenvectors of the force covariance matrix. Analysis of eigenvalues shows that the dominant first mode contributes around 40% to the fluctuating pressures, and the eigenvector mode-shape generally follows the mean pressure distribution. The first mode contributes significantly to the fluctuating load effect, when its influence line is similar to the mode-shape. For such cases, the effective static pressure distribution closely follows the mean pressure distribution on the tributary area, and the quasi-static method would provide a good estimate of peak load effects.