• Title/Summary/Keyword: Static Load Test

Search Result 993, Processing Time 0.026 seconds

Bearing Capacity of Waste Landfill Reinforced by Geosynthetics (토목섬유로 보강된 폐기물 매립지반의 지지력 특성)

  • Shin, Eun-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.39-46
    • /
    • 2007
  • Many industrialized countries of the world have many problems about the reuse of waste landfill area because the increase of terminated waste disposal landfill. Especially, the effective use of the terminated waste disposal landfill nearby the urban area has been demanded, because of the lack of the usable land. However, the reuse of terminated waste disposal landfill site is needed an adequate stabilization of ground for increasing the bearing capacity and reduce the allowable settlement for the given structure. This study is to evaluate the applicability of geosynthetics for the increment of bearing capacity of solid waste landfill ground. The in-situ cyclic plate loading tests were performed to determine the dynamic and static behaviors of reinforced ground with geosynthetics. Four series of test were conducted with variations of geosynthetics, number of geogrid layer. Based on the cyclic plate load test results, the bearing capacity ratio, subgrade modulus of ground, and the elastic rebound ratio were determined.

  • PDF

Estimation of Structural Behavior of the Long Span Temporary Bridge Superstructure Stiffened by Composite Double H-beam (2개의 H형강이 합성된 가설교량 상부구조의 구조거동 평가)

  • Lee, Seung Yong;Park, Young Hoon;Park, Sang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • In this study, in order to increase the span length, the temporary bridge which the center part of span is strengthened by small H-beam and the end part of span is strengthened by steel plate is designed and constructed. Real behavior of proposed temporary bridge is analyzed by field loading test. Analyzed shear buckling strengths and nonlinear behavior of suggested temporary bridge are compared with the those of general temporary bridge. From the field loading test results, it is analyzed that real static behavior of suggested temporary bridge is agree with the analyzed behavior which is considered in design process. Under the proposed design condition, it is investigated that the shear buckling strength of suggested temporary bridge is about 40% higher than that of general temporary bridge, and the ultimate strength of suggested temporary bridge is about higher than that of general temporary bridge. From the study results, it is concluded that the proposed temporary bridge can be applied by the needs of field condition.

Effect on Seal Tooth Clearance on Power Loss and Temperature of Tilting Pad Journal Bearing (씰 투스 간극이 틸팅 패드 저어널 베어링 손실과 온도에 미치는 영향)

  • Bang, Kyungbo;Choi, Yonghoon;Cho, Yongju
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.183-190
    • /
    • 2018
  • Tilting pad journal bearing is widely used for steam turbines because of its excellent dynamic stability. As the turbine capacity increases, power loss in the bearings becomes a matter of concern. Power loss in tilting pad journal bearings can be reduced by increasing the bearing clearance and reducing the pad arc length. In this study, the tilting pad journal bearing is tested by changing the seal tooth clearance to verify the static characteristics of the bearing. Bearing power loss and bearing metal temperature are evaluated to compare the bearing's performance and reliability for several test cases. The test bearing is a tilting pad journal bearing with 300.62mm inner diameter and 120.00mm active length. The bearing power loss, its metal temperature, and oil film thickness are measured and evaluated based on the rotor's rotational speed, oil flow rate, and bearing load. Test results show that a tilting pad journal bearing with large seal tooth clearance has 40% lower power loss compared with a bearing with a small seal tooth clearance. As the seal tooth clearance is increased, the power loss of the tilting pad journal bearing decreases. However, with respect to the bearing metal temperatures, a detuning point is observed that makes the minimum bearing metal temperature. Moreover, as the seal tooth clearance is increased, the oil film thickness increases due to high viscosity.

Evaluation of the Resilient and Permanent Behaviors of Cohesive Soils (점성토의 회복 및 영구변형 특성 평가)

  • SaGong, Myung;Kim, Dae-Hyeon;Choi, Chan-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • Resilient modulus has been used for characterizing the stress-strain behavior of subgrade soils subjected to traffic loadings. With the recent release of the M-E Design Guide, highway agencies are further encouraged to implement the resilient modulus test to improve subgrade design. The subgrade design for the trackbed, however, is primarily relying on the static test results such as $K_{30}$ and deformation modulus, Ev. Therefore applicability of the resilient modulus for the design of trackbed needs to be evaluated. In this study, physical property tests, unconfined compressive tests and resilient modulus tests were conducted to assess the resilient and permanent strain behavior of 14 cohesive subgrade soils. A predictive model for estimating the resilient modulus is proposed based on the results of unconfined compressive tests and tangent elastic modulus, unconfined compressive strength, failure strain, secant modulus at peak, and yield strain. The predicted resilient moduli using the predictive models compared satisfactorily with measured ones. Although the permanent strain occurs during the resilient modulus test, the permanent behavior of subgrade soils is currently not taken into consideration.

Experimental Evaluation for Ultimate Flexural Behaviors of PSC beams with A Corroded Tendon (PS강연선이 부식된 PSC보의 극한휨거동 평가실험)

  • Youn, Seok-Goo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.843-854
    • /
    • 2013
  • This paper presents experimental research work for the evaluation of ultimate flexural behaviors of prestressed concrete beams with a corroded tendon. In order to evaluate the effects of loss of prestress or loss of tendon area on the ultimate flexural strength of prestressed concrete beams, static load tests are conducted using five prestressed concrete beams. After exposing prestressing tendons in two test beams using 25mm drill bit, the exposed tendons were corroded using an accelerating corrosion equipment to simulate loss of tendon area. During the tests, steel strains, concrete strains and displacements at the center of test beams were measured, and acoustic emission measurements were conducted to detect wire fractures. Based on the test results, evaluation method for predicting flexural strength of prestressed concrete beams with corroded tendons is investigated. In addition, evaluation methods for predicting the existence of corroded tendons in post-tensioned prestressed concrete beams at service loads are discussed.

Performance Verification of Hinge Driving Segmented Nut Type Holding and Release Mechanism for Cube Satellite Applications (큐브위성용 힌지 구동형 분리너트식 구속분리장치의 실험적 성능검증)

  • Oh, Hyun-Ung;Lee, Myeong-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.529-534
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we developed a hinge driving segmented nut type holding and release mechanism based on the nichrome burn wire release. The functional performance of the mechanism has been verified through release function test, static load test and shock level measurement test.

Uniaxial Compression Behavior of Circular RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유시트로 구속된 원형 RC기둥의 일축압축 거동)

  • Han, Sang Hoon;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain curve is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with circular section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio, spiral area ratio, and concrete compressive strength are considered as the test variables. Experiment results indicate that CFS jacketing significantly enhances strength and ductility of concrete. In addition, the CFS-jacketed specimens with the spiral steel show the lower load increasement ratio than those without the spiral steel.

Structural Analysis of S-cam Brake Shoe for Commercial Vehicle by FEM (FEM을 이용한 상용차용 S-cam 브레이크슈의 구조해석)

  • Suh, Chang-Min;Jee, Hyun-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2009
  • Structural analysis of a brake shoe for commercial vehicle was performed using finite element method. Since the strength of a brake shoe is affected by the magnitude and distribution shape of the contact pressure with the drum, the contact pressure between the shoe friction material and drum was calculated using a 2-Dimensional non-linear contact analysis in a state. And the brake was actuated by input air pressure and the drum of it was calculated both stationary and dynamic based on forced torque applied to the drum during the static state analysis. The results of the above analysis were then used as the load boundary conditions for a 3-Dimensional shoe model analysis to determine the maximum strain on the shoes. In the analysis model, the values of tensile test were used for the material properties of the brake shoes and drum, while the values of compression test were used for the friction material. We assumed it as linear variation, even though the properties of friction material were actually non-linear. The experiments were carried out under the same analysis conditions used for fatigue test and under the same brake system which equipped with a brake drum based on the actual axle state in a vehicle. The strains were measured at the same locations where the analysis was performed on the shoes. The obtained results of the experiment matched well with those from the analysis. Consequently, the model used in this study was able to determine the stress at the maximum air pressure at the braking system, thereby a modified shoe model in facilitating was satisfied with the required endurance strength in the vehicle.

A Study for Durability Test of Dynamic Power Cable under Marine Operating Environment Condition (동적 파워 케이블의 해양운용환경 내구성 검증시험에 관한 연구)

  • Shim, Chunsik;Kim, Chulmin;Rho, Yuho;Lee, Jaebok;Chae, Kwangsu;Song, Hacheol;Kim, Hokyeong;Bae, Chulmin;Wi, Sungkuk;Im, Kichen
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.1
    • /
    • pp.49-57
    • /
    • 2021
  • In the production power transmitting of a floating production system like a wind offshore floating, the power cable should be connected from the surface system into the subsea system. The connection between the surface and the subsea system will make the power cable get a dynamic load like current and wave forces. Based on this condition, a dynamic power cable is required to endure external physical force and vibration in the long-term condition. It needs more requirements than static power cable for mechanical fatigue properties to prevent failures during operations in marine environments where the external and internal loads work continuously. As a process to verify, the durability test of dynamic power cables under the marine operation environment condition was carried out by using domestic technology development.

Experimental Validation of High Damping Printed Circuit Board With a Multi-layered Superelastic Shape Memory Alloy Stiffener (적층형 초탄성 형상기억합금 보강재 기반 고댐핑 전자기판의 실험적 성능 검증)

  • Shin, Seok-Jin;Park, Sung-Woo;Kang, Soo-Jin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.661-669
    • /
    • 2021
  • A mechanical stiffener has been mainly applied on a PCB to secure fatigue life of a solder joint of an electronic components in spaceborne electronics by minimizing bending displacement of the PCB. However, it causes an increase of mass and volume of the electronics. The high damping PCB implemented by multi-layered viscoelastic tapes of a previous research was effective for assuring the fatigue life of the solder joint, but it also has a limitation to decrease accommodation efficiency for the components on the PCB. In this study, we proposed high damping PCB with a multi-layered superelastic shape memory alloy stiffener for spatialminimized, light-weighted, high-integrated structure design of the electronics. To investigate the basic characteristics of the proposed PCB, a static load test, a free vibration test were performed. Then, the high damping characteristic and the design effectiveness of the PCB were validated through a random vibration test.