• 제목/요약/키워드: Static Analysis Tool

검색결과 284건 처리시간 0.024초

Analysis of Drawbead Process by Static-Explicit Finite Element Method

  • Jung, Dong-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권12호
    • /
    • pp.1687-1692
    • /
    • 2002
  • The problem analyzed here is a sheet metal forming process which requires a drawbead. The drawbead provides the sheet metal enough tension to be deformed plastically along the punch face and consequently, ensures a proper shape of final products by fixing the sheet to the die. Therefore, the optimum design of drawbead is indispensable in obtaining the desired formability. A static-explicit finite element analysis is carried out to provide a perspective tool for designing the drawbead. The finite element formulation is constructed from static equilibrium equation and takes into account the boundary condition that involves a proper contact condition. The deformation behavior of sheet material is formulated by the elastic-plastic constitutive equation. The finite element formulation has been solved based on an existing method that is called the static-explicit method. The main features of the static-explicit method are first that there is no convergence problem. Second, the problem of contact and friction is easily solved by application of very small time interval. During the analysis of drawbead processes, the strain distribution and the drawing force on drawbead can be analyzed. And the effects of bead shape and number of beads on sheet forming processes were investigated. The results of the static explicit analysis of drawbead processes show no convergence problem and comparatively accurate results even though severe high geometric and contact-friction nonlinearity. Moreover, the computational results of a static-explicit finite element analysis can supply very valuable information for designing the drawbead process in which the defects of final sheet product can be removed.

유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구 (A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

공작기계용 철심형 리피어모터 기술 개발 (Development of Iron Core Type Linear Motor for Machine Tool)

  • 정재한;박재완;이상룡
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.82-89
    • /
    • 2002
  • There is an intensifying demand fur linear motors in vast range of industry applications such as in factory automation and semi-conductor manufacturing equipment due to their high positioning accuracy, high static stiffness, high thrust and excellent dynamic characteristics. This paper presents an iron core type linear motor for machine tool whose rated thrust is up to 6000N. For electromagnetic field and dynamic analysis, finite element method (FEM) is implemented to predict motor performance. Various design parameters are considered to reduce thrust ripple and to improve dynamic performance with the least sacrifice of effective thrust. Experimental results on thrust and static stiffness are also followed to confirmed the validity of the analysis.

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

마이크로 믹서의 형상 최적화 (Shape Optimization of a Micro-Static Mixer)

  • 한석영;김성훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.166-171
    • /
    • 2004
  • In this study, shape optimization of micro-static mixer with a cantilever beam was accomplished for mixing the mixing efficiency by using successive response surface approximations. Variables were chosen as the length of cantilever beam and the angle between horizontal and the cantilever beam. Sequential approximate optimization method was used to deal with both highly nonlinear and non-smooth characteristics of flow field in a micro-static mixer. Shape optimization problem of a micro-static mixer can be divided into a series of simple subproblems. Approximation to solve the subproblems was performed by response surface approximation, which does not require the sensitivity analysis. To verify the reliability of approximated objective function and the accuracy of it, ANOVA analysis and variables selection method were implemented, respectively. It was verified that successive response surface approximation worked very well and the mixing efficiency was improved very much comparing with the initial shape of a micro-static mixer.

  • PDF

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

무인비행체 비행제어 Open Source 소프트웨어에 대한 정적분석 및 개선방안 (Static Analysis and Improvement Opportunities for Open Source of UAV Flight Control Software)

  • 장정훈;강유선;이지현
    • 한국항공우주학회지
    • /
    • 제49권6호
    • /
    • pp.473-480
    • /
    • 2021
  • 소형 무인비행체 드론의 비행제어기(Flight Controller) 소프트웨어로 널리 사용되고 있는 오픈소스(Open Source)에 대한 정적분석(Static Analysis)을 통해 소프트웨어 품질의 문제점을 분석하고 개선 방안을 제시한다. 소프트웨어 품질 기준으로는 국제적으로 널리 적용되고 있는 MISRA 코딩 규칙을 선정하였으며, 정적분석 도구는 국제 도구인증(Tool Certification)을 받아 항공분야 뿐만 아니라 안전성(Safety)이 요구되는 자동차, 철도, 원자력, 의료 등 모든 산업에서 활용되고 있는 LDRA Tool을 사용하였다. 오픈소스 모듈의 구조, 사용 데이터 분석, 코딩 규칙 준수, 품질 지표(복잡도 및 시험성) 등 소프트웨어의 품질 전반에서 안전성을 위협하는 문제점들을 발견하였으며, 이에 대한 개선 방안을 제시하였다.

Static and harmonic analysis of moderately thick square sandwich plate using FEM

  • Manoj Nawariya;Avadesh K. Sharma;Pankaj Sonia;Vijay Verma
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.83-100
    • /
    • 2023
  • In this paper, sandwich plate, constructed with orthotropic and isotropic composite materials, is analyzed to obtain the static and harmonic behavior. The analysis is done by using ANSYS APDL FEM tool. A solid-shell 190 and an 8-node solid 185 elements are employed for face and core material respectively to analyze the plate. Results was attained by using Reissner-Mindlin theory. Effect of increasing thickness ratio of face sheet to depth of the plate is presented on static, vibration and harmonic response on the sheet and the results are discussed briefly. Published work in open domain was used to validate the results and observed excellent agreement. It can be stated that proposed model presents results with remarkable accuracy. Results are obtained to reduce the weight of the plate and minimizing the vibration amplitudes.

리플렉션과 문자열 암호화를 이용한 안드로이드 API 난독화 도구 (An Android API Obfuscation Tool using Reflection and String Encryption)

  • 이주혁;박희완
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권1호
    • /
    • pp.23-30
    • /
    • 2015
  • 자바 리플렉션은 프로그램 구성 요소들을 조사하여 호출 및 조작할 수 있는 자바 언어의 기능이다. 이를 이용하면 보다 많은 호출 단계를 거치는 구조로 변형되기에 난독화 효과를 얻을 수 있다. 그러나 이를 이용할 때, 프로그램 자체의 구성 요소 이름이 문자열 형태로 노출된다. 본 논문에서는 안드로이드 애플리케이션에서 리플렉션을 적용하여 난독화하고, 이때 노출되는 문자열들을 비즈네르 암호화 알고리즘으로 은닉하여 정적분석을 방해하는 기법 및 도구를 제시한다. 실험 결과 소스 코드의 전체적인 복잡도를 증가시키는 데 효과가 있었다. 또한 서버와 로컬 기반의 두 가지 복호화 방법을 제공하는데, 이는 애플리케이션의 실행속도에 영향을 미치기 때문에 API의 중요도에 따라 선택할 수 있다.