• Title/Summary/Keyword: State Structure Function

Search Result 521, Processing Time 0.025 seconds

Improvement of Steady State Response Using PI+Double Integral Controller (비례적분+이중적분 제어기를 이용한 정상상태 응답 개선)

  • Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 2016
  • The performance characteristics of a dynamic control system are evaluated according to the transient and steady-state responses. The transient performance is the controllability of the output for the tracking of the reference or the ability to reduce or reject the effects of unwanted disturbances; alternatively, the steady-state performance is represented by the magnitude of the control error at the steady state. As the effects of the two performances on each other are reciprocal, a controller design that shows a zero steady-state error for the ramp input is uncommon because of the challenge regarding the achievement of an acceptable transient response. This paper proposes a PI+double-integral controller for the elimination of the steady-state error for the ramp input while a sound transient performance is maintained. The control-gain design procedure is described by the second-order response for the step input and the response of the error dynamics for the ramp input. The PI+double-integral controller is designed for the first-order transfer function that is derived from a system identification with the open-loop experiment data of the dc-motor. The simple structure of the proposed controller enables the adoption of a low-end microcontroller for the implementation of a real-time control. The experiment results show that the control performance is as effective as that of the simulation analysis for the operating point of linear system; furthermore, the PI+double-integral controller can be conveniently applied to the control system, which is desirable for the improvement of the steady-state error.

Review of Simulators for Cardiovascular System (심혈관계 시뮬레이터의 연구동향)

  • Shin, Sang-Hoon;Lee, Ju-Yeon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.15 no.1
    • /
    • pp.55-66
    • /
    • 2011
  • Objectives: The purpose of this study is to review the simulator for cardiovascular system. Methods & Results: Simulators were classified according to the structure and function of cardiovascular system. Heart and blood vessel were selected as the represent of structure. Blood pressure and blood flow were chose as the functional index. With the view points of four keywords, four kinds of simulators were selected: artificial heart, pressure simulator, flow simulator, and pulse simulator. Conclusions: This paper discussed the state of the art of research and development of the selected four kinds of simulators.

Joining of Thermoplastics by the Ultrasonic Welding (초음파용접에 의한 열가소성 수지의 접합)

  • Park, Joon-Boo;Lee, Chul-Ku
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.118-125
    • /
    • 1992
  • Joining of thermoplastics is an area of growing importance in the automotive, aerospace, electronics medical and other domestic appliance industries. While adhesive Bonding or mechanical fastening could be used to join thermoplastics, welding is very effective because of its speed and low cost. This study investgated the ultrasonic joining of thermoplastics. Four kinds of thermoplastics such as Acrylonitrile Butadiene Styrene, Polystyrene, Polyethylene and Polypropylene were used, ultilizing all possible joining combinations. In each combination of thermoplastics, the weldability of the joint was evaluated as a function of weld time, amplitude of vibration and pressure. It was generally found that joining of amorphous thermoplastics with semicrystalline thermopastics resulted in poor joints due to its different crystalline structure. Joining of the amorphous thermoplastics together and joining of the semicrystalline thermoplastics together produced the best joints owing to its same crystalline structure.

  • PDF

Extended Petri Nets and Distributed Processor Systems Modeling (확장된 페트리 네트와 분산형 공정 제어의 모델링)

  • Lim, Sung-Ho;Kim, Hyun-Ki;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.450-454
    • /
    • 1988
  • In order to represent and analyze distributed system design, the model based on an extended form of Petri nets, which enables one to represent both the structure and the behavior of a distributed system, is predented. Behavioral properties of the design representation are verified by translating the extended Petri net into an equivalent ordinary Petri net. The model emphasizes the unified representation of control flows, hierarchical structure, and distributed system state. Modeling technique isemployed for the performance and function analysis of flexible manufacturing system with a set of processors.

  • PDF

NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION

  • BACH, KIEHUNN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the onedimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.

Porosome: the Universal Molecular Machinery for Cell Secretion

  • Jena, Bhanu P.
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.517-529
    • /
    • 2008
  • Porosomes are supramolecular, lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. The mouth of the porosome opening to the outside, range in size from 150 nm in diameter in acinar cells of the exocrine pancreas, to 12 nm in neurons, which dilates during cell secretion, returning to its resting size following completion of the process. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. In this mini review, the discovery of the porosome, its structure, function, isolation, chemistry, and reconstitution into lipid membrane, the molecular mechanism of secretory vesicle swelling and fusion at the base of porosomes, and how this new information provides a paradigm shift in our understanding of cell secretion, is discussed.

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

State Dependence of Activation Energies for High Temperature Creep of A17075 Alloy (A17075합금의 고온 크리프 활성화에너지의 상태의존성)

  • 조용이;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.131-140
    • /
    • 1993
  • The activation energy for high temperature creep is associated with stresses, temperatures, straians And the creep strain appears to be a function of a temperature, compensated time, namely $te^{-}$.DELTA.H/RT/, and the stress. In fact this functional relation appears to be isomorphic to material structure by x-ray analyses. Applying this functional relation, the dependance of activation energy for A17075 creep was investigated. The activation energy for creep is insensitive to stress, temperature, structure, and strain. And phenomenological model agrees with experimental creep data.

A structure of musculotendon model with a fatigue profile of electrically stimulated skeletal muscle (전기자극이 가해진 골격근의 피로항을 갖는 근육 모델의 구조)

  • Lim, Jong-Kwang;Nam, Moon-Hyon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.611-613
    • /
    • 1998
  • A structure of musculotendon model with a fatigue profile is investigated. The Hill-type musculotendon model can predicts the decline in muscle force for a given fatigue profile. It consists of nonlinear activation and contraction dynamics based on the physiological concepts. It is normalized for generalization to deal with the various muscles. Muscle force generated by continuous tetanic electrical monophasic pulsewidth modulation stimulation is decreased in time. A fatigue profile is expressed by a function of intramuscular acidification and applied to the relationship between muscle force and shortening velocity in contraction dynamics. The results of computer simulation are well matched with data in a literature which are isometrically performed for knee extension muscles. Also change in optimal fiber length has an effect only on muscle time, constant not on the steady-state tetanic force.

  • PDF

Significant Structure of Liquid Ethylene Chloride (액체 염화에틸렌의 구조에 관하여)

  • Ahn Woon Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.125-127
    • /
    • 1964
  • Upon melting, a part of ethylene-chloride molecules in trans-form in the solid state changes into gauche-form. The partition function for the material was developed according to the significant structure theory of liquid proposed by H. Eyring and his co-workers, and the parameters $E_s$, ${\theta}$, $V_s$, and a, therein, are determined by the manner developed by Chang, et al. The molar volume, vapor pressure, vaporization entropy, critical point properties and surface tension of the liquid were calculated. The results are in good agreement with experimental values.

  • PDF