Browse > Article
http://dx.doi.org/10.5303/JKAS.2016.49.1.1

NON-GREY RADIATIVE TRANSFER IN THE PHOTOSPHERIC CONVECTION : VALIDITY OF THE EDDINGTON APPROXIMATION  

BACH, KIEHUNN (Department of Astronomy, Yonsei University)
Publication Information
Journal of The Korean Astronomical Society / v.49, no.1, 2016 , pp. 1-8 More about this Journal
Abstract
The aim of this study is to describe the physical processes taking place in the solar photosphere. Based on 3D hydrodynamic simulations including a detailed radiation transfer scheme, we investigate thermodynamic structures and radiation fields in solar surface convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. Particularly, a non-grey radiative transfer incorporating the opacity distribution function was considered in our calculations. In addition, we evaluate the classical approximations that are usually adopted in the onedimensional stellar structure models. We numerically reconfirm that radiation fields are well represented by the asymptotic characteristics of the Eddington approximation (the diffusion limit and the streaming limit). However, this classical approximation underestimates radiation energy in the shallow layers near the surface, which implies that a reliable treatment of the non-grey line opacities is crucial for the accurate description of the photospheric convection phenomenon.
Keywords
Sun:photosphere; atmospheres; granulation; numerical:hydrodynamics; radiative transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Asplund, M., Grevesse, N., & Sauval, A. J. 2005, The Solar Chemical Composition, ASPC, 336, 25
2 Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, The Chemical Composition of the Sun, ARA&A, 47, 481   DOI
3 Bach, K., & Kim, Y.-C. 2012, Hydrodynamical Comparison Test of Solar Models, Astron. Nachr., 333, 934   DOI
4 Bahcall, J. N., & Loeb, A. 1990, Element Diffusion in Stellar Interiors, ApJ, 360, 267   DOI
5 Baran, O. A., & Stodilka, M. I. 2014, Specifics of the Solar Photospheric Convection at Granulation, Mesogranulation, and Supergranulation Scales, Sol. Phys., 30, 173
6 Basu, S., & Antia, H. M. 2008, Helioseismology and Solar Abundances, Phy. Rep., 457, 217   DOI
7 Böhm-Vitense, E. 1958, Über Die Wasserstoffkonvektionszone in Sternen Verschiedener Effektivtemperaturen und Leuchtkräfte. Mit 5 Textabbildungen, Z. Astrophys., 46, 108
8 Cannon, C. J. 1973, Angular Quadrature Perturbations in Radiative Transfer Theory, J.QSRT, 13, 627
9 Cannon, C. J. 1973, Frequency-Quadrature Perturbations in Radiative-Transfer Theory, ApJ, 185, 621   DOI
10 Castelli, F., Gratton, R. G., & Kurucz, R. L. 1997, Notes on the convection in the ATLAS9 model atmospheres, A&A, 318, 841
11 Chan, K. L., & Wolff, C. L. 1982, ADI on Staggered Mesh - A Method for the Calculation of Compressible Convection, J. Comp. Phys., 47, 109   DOI
12 Chan, K. L., & Sofia, S. 1987, Validity Tests of the Mixing-Length Theory of Deep Convection, Science, 235, 465   DOI
13 Deardorff, J. W. 1970, A Numerical Study of Three-dimensional Turbulent Channel Flow at Large Reynolds Numbers, J. Fluid Mechanics, 41, 453   DOI
14 Dravins, D. 1987, Stellar Granulation II: Stellar Photospheric Line Asymmetries, A&A, 172, 211
15 Ferguson, J. W., Alexander, D. R., Allard, F., et al. 2005, Low- Temperature Opacities, ApJ, 623, 585   DOI
16 Freytag, B., Ludwig, H.-G., & Steffen, M. 1996, Hydrodynamical Models of Stellar Convection. The Role of Overshoot in DA White Dwarfs, A-Type Stars, and the Sun, A&A, 313, 497
17 Grevesse, N., & Sauval, A. J. 1998, Standard Solar Composition, SSRv, 85, 161
18 Hathaway, D. H., Teil, T., Norton, A. A., & Kitiashvili, I. 2015, The Sun’s Photospheric Convection Spectrum, ApJ, 811, 105   DOI
19 Hubeny, I. 2003, Stellar Atmosphere Modeling, ASPC, 288, 17
20 Iglesias, C. A., & Rogers, F. J. 1996, Updated Opal Opacities, ApJ, 464, 943   DOI
21 Kurucz, R. L. 1996, Model Atmospheres and Spectrum Synthesis, ASPC, 108, 160
22 Kim, Y. -C., Fox, P. A., Sofia, S., & Demarque, P. 1995, Modeling of Shallow and Inefficient Convection in the Outer Layers of the Sun Using Realistic Physics, ApJ, 442, 422   DOI
23 Kim, Y. -C., Fox, P. A., Demarque, P., & Sofia, S. 1996, Modeling Convection in the Outer Layers of the Sun: A Comparison with Predictions of theMixing-Length Approximation, ApJ, 461, 499   DOI
24 Kurucz, H. L. 1995, Laboratory and Astronomical High Resolution Spectra, ASPC, 81, 17
25 Ludwig, H. G., Freytag, B., & Steffen, M. 1999, A Calibration of theMixing-Length for Solar-Type Stars Based on Hydrodynamical Simulations, A&A, 346, 111
26 Mihalas, D. 1978, Stellar Atmospheres 2nd edn, Freeman and Co. (San Francisco: Freeman and Co.)
27 Nordlund, A. 1982 Numerical Simulations of the Solar Granulation. I - Basic Equations and Methods, A&A, 107, 1
28 Nordlund, A., & Dravins, D. 1990, Stellar Granulation. III - Hydrodynamic Model Atmospheres, A&A, 228, 155
29 Peaceman, D. W., & Rachford, Jr. H. H. 1955, The Numerical Solution of Parabolic and Elliptic Differential Equations, J. Soc. Ind. Appl. Math, 3, 28   DOI
30 Robinson, F. J., Demarque, P., Li, L. H., Sofia, S., Kim, Y.-C., Chan, K. L., & Guenther, D. B. 2003, Three-Dimensional Convection Simulations of the Outer Layers of the Sun Using Realistic Physics, MNRAS, 340, 923   DOI
31 Robinson, F. J., Demarque, P., Li, L. H., Sofia, S., Kim, Y.-C., Chan, K. L., & Guenther, D. B. 2004, Three-Dimensional Simulations of the Upper Radiation-Convection Transition Layer in Subgiant Stars, MNRAS, 347, 1208U   DOI
32 Smagorinsky, J. 1963, General Circulation Experiments with the Primitive Equations I. The Basic Experiment, Monthly Weather Rev., 91, 99   DOI
33 Robinson, F. J., Demarque, P., Guenther, D. B. Kim, Y.-C., & Chan, K. L. 2005, Simulating the Outer Layers of Procyon A : A Comparison with the Sun, MNRAS, 362, 1031   DOI
34 Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, OPAL Equation-of-State Tables for Astrophysical Applications, ApJ, 456, 902   DOI
35 Sbordone, L., Bonifacio, P., Castelli, F., & Kurucz, R. L. 2004, ATLAS and SYNTHE under Linux, MSAIS, 5, 93
36 Spiegel, E. A. 1957, The Smoothing of Temperature Fluctuations by Radiative Transfer, ApJ, 126, 202   DOI
37 Steffen, M., Ludwig, H.-G., & Kruess, A. 1989, A Numerical Simulation Study of Solar Granular Convection in Cells of Different Horizontal Dimension, A&A, 213, 371
38 Stein, R. F., & Nordlund, Å. 1989, Topology of Convection Beneath the Solar Surface, ApJL, 342, 95   DOI
39 Tanner, J. D., Basu, S., & Demarque, P. 2014, The Effect of Metallicity-dependent T-tau Relations on Calibrated Stellar Models, ApJL, 785, 13   DOI
40 Thoul, A. A., Bahcall, J. N., & Loeb, A. 1994, Element Diffusion in the Solar Interior, ApJ, 421, 828   DOI
41 Trampedach, R., & Stein, R. F. 2011, The Mass Mixing Length in Convective Stellar Envelopes, ApJ, 731, 78   DOI
42 Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å., & Asplund, M. 2014, Improvements to Stellar Structure Models, Based on a Grid of 3D Convection Simulations - I. T(τ) Relations, MNRAS, 442, 805   DOI
43 Vögler, A., Bruls, J. H. M. J., & Schüssler, M. 2004, Approximations for Non-grey Radiative Transfer in Numerical Simulations of the Solar Photosphere, A&A, 421, 741   DOI
44 Trampedach, R., Stein, R. F., Christensen-Dalsgaard, J., Nordlund, Å., & Asplund, M. 2014, Improvements to Stellar Structure Models, Based on a Grid of 3D Convection Simulations - II. Calibrating theMixing-length Formulation, MNRAS, 445, 4366   DOI
45 Unno, W., & Spiegel, E. A. 1966, The Eddington Approximation in the Radiative Heat Equation, PASJ, 18, 85