Browse > Article

Porosome: the Universal Molecular Machinery for Cell Secretion  

Jena, Bhanu P. (Department of Physiology, Wayne State University School of Medicine)
Abstract
Porosomes are supramolecular, lipoprotein structures at the cell plasma membrane, where membrane-bound secretory vesicles transiently dock and fuse to release inravesicular contents to the outside during cell secretion. The mouth of the porosome opening to the outside, range in size from 150 nm in diameter in acinar cells of the exocrine pancreas, to 12 nm in neurons, which dilates during cell secretion, returning to its resting size following completion of the process. In the past decade, the composition of the porosome, its structure and dynamics at nm resolution and in real time, and its functional reconstitution into artificial lipid membrane, have all been elucidated. In this mini review, the discovery of the porosome, its structure, function, isolation, chemistry, and reconstitution into lipid membrane, the molecular mechanism of secretory vesicle swelling and fusion at the base of porosomes, and how this new information provides a paradigm shift in our understanding of cell secretion, is discussed.
Keywords
cell secretion; membrane fusion; porosome;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bako, I., Hutter, J., and Palinkas, G. (2002). Car-Parrinello molecular dynamics simulation of the hydrated calcium ion. J. Chem. Phys. 117, 9838-9843   DOI   ScienceOn
2 Cho, S.J., Wakade, A., Pappas, G.D., and Jena, B.P. (2002d). New structure involved in transient membrane fusion and exocytosis. Ann. NY Acad. Sci. 971, 254-256   DOI   ScienceOn
3 Cho, S.-J., Sattar, AK, Jeong, E.H., Satchi, M., Cho, J., Dash, S., Mayes, M.S., Stromer, M.H., and Jena, B.P. (2002f). Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc. Natl. Acad. Sci. USA 99, 4720-4724
4 Cho, W.J., Ren, G., and Jena, B.P. (2008). EM 3D contourmaps provide protein assembly at the nanoscale within the neuronal porosome complex. J. Microscopy 232, 106-111   DOI   ScienceOn
5 Gaisano, H.Y., Sheu, L., Wong, P.P., Klip, A., and Trimble, w'S. (1997). SNAP-23 is located in the basolateral plasma membrane of rat pancreatic acinar cells. FEBS Lett. 414, 298-302   DOI   ScienceOn
6 Goodson, HV., Valetti, C., and Kreis, TE. (1997). Motors and membrane traffic. Curr. Opin. Cell BioI. 9, 18-28   DOI   ScienceOn
7 Jena, B.P. (2004). Discovery of the Porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J. Cell. Mol. Med. 8, 1-21   DOI   ScienceOn
8 Jena, B.P. (2005). Molecular machinery and mechanism of cell secretion. Exp. BioI. Med. 230, 307-319   DOI
9 Jeremic, A, Cho, w'J., and Jena, B.P. (2004b). Membrane fusion: what may transpire at the atomic level. J. BioI. Phys. Chern. 4, 139-142
10 Jeremic, A, Cho, w'J., and Jena, B.P. (2005). Involvement of water channels in synaptic vesicle swelling. Exp. BioI. Med. 230, 674-680   DOI
11 Ohyama, A, Komiya, Y., and Igarashi, M. (2001). Globular tail of myosin-V is bound to vamp/synaptobrevin. Biochem. Biophys. Res. Commun. 280, 988-991   DOI   ScienceOn
12 Jeremic, A, Kelly, M., Cho, S.-J., Stromer, M.H., and Jena, B.P. (2003). Reconstituted fusion pore. Biophys. J. 85, 2035-2043   DOI   ScienceOn
13 Abu-Hamdah, R., Cho, W.J., Cho, S.-J., Jeremic, A., Kelly, M., Ilie, A.E., and Jena, B.P. (2004). Regulation of the water channel aquaporin-1: isolation and reconstitution of the regulatory complex. Cell Biol. Int. 28, 7-17   DOI   ScienceOn
14 Jena, B.P., Schneider, SW., Geibel, J.P., Webster, P., Oberleithner, H., and Sritharan, KC. (1997). G; regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94,13317-13322
15 Cho, S.-J., Quinn, A.S., Stromer, M.H., Dash, S., Cho, J., Taatjes, D.J., and Jena, B.P. (2002a). Structure and dynamics of the fusion pore in live cells. Cell Biol. Int. 26, 35-42   DOI   ScienceOn
16 Jeremic, A, Kelly, M., Cho, J., Cho, S.-J., Harber, J.K., and Jena, B.P. (2004a). Calcium drives fusion of SNARE-apposed bilayers. Cell Bioi .Int. 28, 19-31   DOI   ScienceOn
17 Lawson, D., Fewtrell, C., Gomperts, B., and Raff, M. (1975). Antiimmunoglobulin-induced histamine secretion by rat peritoneal mast cells studied by immunoferritin electron microscopy. J. Exp. Med. 142,391-401   DOI   ScienceOn
18 Wilson, OW., Whiteheart, SW., Wiedmann, M., Brunner, M., and Rothman, JE. (1992). A multisubunit particle implicated in membrane fusion. J. Cell BioI. 117,531-538   DOI   ScienceOn
19 Jena, B.P. (2007). Secretion machinery at the cell plasma membrane. Curr. Opin. Struct. BioI. 17, 437-443   DOI   ScienceOn
20 Cho, W.J., Jeremic, A., Rognlien, K1., Zhvania, M.G., Lazrishvili, I., Tamar, B., and Jena, B.P. (2004). Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell BioI. Int. 28,699-708   DOI   ScienceOn
21 Woodbury, D.J. (1999). Nystatin/ergosterol method for reconstituting ion channels into planar lipid bilayers. Methods Enzymol. 294, 319-339   DOI
22 Faigle, W., Colucci-Guyon, E., Louvard, D., Amigorena, S., and Galli, 1. (2000). Vimentin filaments in fibroblasts are a reservoir for SNAP-23, a component of the membrane fusion machinery. Mol. BioI. Cell 11,3485-3494   DOI
23 Cho, S.-J., Kelly, M., Rognlien, K.T., Cho, J., Harber, J.K., and Jena, B.P. (2002c). SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys. J. 83, 2522-2527   DOI   ScienceOn
24 Kelly, M., Cho, vis, Jeremic, A, Abu-Hamdah, R., and Jena, B.P. (2004). Vesicle swelling regulates content expulsion during secretion. Cell BioI. Int. 28, 709-716   DOI   ScienceOn
25 Oyler, GA, Higgins, GA, Hart, RA, Battenberg, E., Billingsley, M., Bloom, FE., and Wilson, M.C. (1989). The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J. Cell BioI. 109,3039-3052   DOI
26 Trimble, W.S., Cowan, OW., and Scheller, R.H. (1988). VAMP-1: A synaptic vesicle-associated integral membrane protein. Proc. Natl. Acad. Sci. USA 85, 4538-4542
27 Bennett, M.K., Calakos, N., and Schller, R.H. (1992). Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257, 255-259   DOI
28 Bennett, V. (1990). Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm. Physiol. Rev 70, 1029-1065   DOI
29 Jeremic, A, Quinn, AS., Cho, W.J., Taatjes, D.J., and Jena, B.P. (2006). Energy-dependent disassembly of self-assembled SNARE complex: observation at nanometer resolution using atomic force microscopy. J. Am. Chern. Soc. 128,26-27   DOI   ScienceOn
30 Potoff, J.J., Issa, Z., Manke, C.w', Jr., and Jena, B.P. (2008). Ca2+Dimethylphosphate complex formation: providing insight into Ca2+ mediated local dehydration and membrane fusion in cells. Cell BioI. Int. 32, 361-366   DOI   ScienceOn
31 Plattner, H., Atalejo, AR., and Neher, E. (1997). Ultrastructural organization of bovine chromaffin cell cortex-analysis by cryofixation and morphometry of aspects pertinent to exocytosis. J. Cell BioI. 139,1709-1717   DOI
32 Cho, W.J., Jeremic, A., and Jena, B.P. (2005b). Direct interaction between SNAP-23 and L-type calcium channel. J. Cell. Mol. Med. 9, 380-386   DOI   ScienceOn
33 Malhotra, V., Orci, L., Glick, B.S., Block, M.R., and Rothman, J.E. (1988). Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54, 221-227   DOI   ScienceOn
34 Nakano, M., Nogami, S., Sato, S., Terano, A, and Shirataki, H. (2001). Interaction of syntaxin with a-todrin, a major component of the submembranous cytoskeleton. Biochem. Biophys. Res. Commun. 288, 468-475   DOI   ScienceOn
35 Jena, B.P., Cho, S.-J., Jeremic, A., Stromer, M.H., and AbuHamdah, R. (2003). Structure and composition of the fusion pore. Biophys. J. 84,1-7   DOI   ScienceOn
36 Cohen, F.S., and Niles, W.D. (1993). Reconstituting channels into planar membranes: a conceptual framework and methods for fusing vesicles to planar bilayer phospholipid membranes. Methods Enzymol. 220, 50-68   DOI
37 Woodbury, D.J., and Miller, C. (1990). Nystatin-induced liposome fusion. A versatile approach to ion channel reconstitution into planar bilayers. Biophys. J. 58, 833-839   DOI   ScienceOn
38 Cho, S.-J., Jeftinija, K., Glavaski, A., Jeftinija, S., Jena, B.P., and Anderson, L.L. (2002b). Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143, 1144-1148   DOI   ScienceOn
39 Kelly, M.L., and Woodbury, D.J. (1996). Ion channels from synaptic vesicle membrane fragments reconstituted into lipid bilayers. Biophys. J. 70,2593-2599   DOI   ScienceOn
40 Schneider, S.w', Sritharan, K.C., Geibel, J.P., Oberleithner, H., and Jena, B.P. (1997). Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc. Natl. Acad. Sci. USA 94, 316-321
41 Cook, J.D., Cho, W.J., Stemmler, T.L., and Jena, B.P. (2008). Circular dichroism (CD) spectroscopy of the assembly and disassembly of SNAREs: the proteins involved in membrane fusion in cells. Chem .Phys. Lett. 462, 6-9   DOI   ScienceOn
42 Cho, W.J., Jeremic, A., and Jena, B.P. (2005a). Size of supramolecular SNARE complex membrane-directed self-assembly. J. Am. Chem. Soc. 127,10156-10157   DOI   ScienceOn
43 Cho, w'J., and Jena, B.P. (2007). N-ethymaleimide sensitive factor is a right-handed molecular motor. J. Biomed. Nanotech. 3, 209-211   DOI   ScienceOn
44 Jeong, E.-H., Webster, P., Khuong, C.O., Abdus Sattar, A.K, Satchi, M., and Jena, B.P. (1999). The native membrane fusion machinery in cells. Cell BioI. Int. 22, 657-670
45 Cho, W.J., Jeremic, A. Jin, H., Ren, G., and Jena, B.P. (2007). Neuronal fusion pore assembly requires membrane cholesterol. Cell BioI. Int. 31, 1301-1308   DOI   ScienceOn
46 Cho, S.-J., Cho, J., and Jena, B.P. (2002e). The number of secretory vesicles remains unchanged flowing exocytosis. Cell BioI. Int. 26, 29-33   DOI   ScienceOn