• 제목/요약/키워드: State Feedback Controller

검색결과 676건 처리시간 0.026초

액츄에이터 고장을 고려한 비선형 시간지연시스템의 $H_{\infty}$ 고장허용제어 (An $H_{\infty}$ Fault Tolerant Control for Nonlinear Time delay Systems with Actuator Failures)

  • 류석환
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제12권3호
    • /
    • pp.215-224
    • /
    • 2012
  • This paper deals with a design of fault tolerant state feedback controllers for continuous time nonlinear time delay systems with actuator failures. The goal is to find an asymptotically stabilizing controller such that the closed loop system achieves the prescribed $H_{\infty}$ performance objective in the actuator fault cases. Based on a sum of squares (SOS) approach, a design method for $H_{\infty}$ fault tolerant controller is presented. In order to demonstrate our design method, a numerical example is provided.

Sliding-mode 기법에 의한 모델기준 적응제어계의 응답특성 개선 (Improvement of response in model reference adaptive control system using sliding-mode control method)

  • 최부귀;이형기;권세현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 추계학술대회 논문집 학회본부
    • /
    • pp.76-79
    • /
    • 1988
  • The sliding mode control in an effective method to eatablish robustness against parameter variation and disturbance. But. In sliding mode strategy, the control function is discontinuous on the hyperplane. However the discontinuous change in control structure caves the controller input to chaffer and gives non-zero steady state error. Consequently, a multiloop feedback control system supplemented by a complelmentary controller is used to improved the drive performence of a DC servo motor and reduce sensitivity to parameter variation, nonlinear effects, and other disturbances.

  • PDF

퍼지 기법을 이용한 시간 지연을 가지는 이산시간 비선형 시스템에 대한 강인 제어기 설계 (Design of the Robust Controller for the Discrete-Time Nonlinear System with Time-Delay Via Fuzzy Approach)

  • 김택룡;박진배;주영혼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2723-2725
    • /
    • 2005
  • In this paper, a robust $H{\infty}$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagi-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-delayed state. Then parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H{\infty}$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique.

  • PDF

공진형 인버터를 위한 DELTA MODULATED CURRENT REGULATOR에 관한 연구 (DELTA MODULATED CURRENT REGULATOR FOR RESONANT LINK INVERTER)

  • 현동석;이택기;안성찬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.544-547
    • /
    • 1989
  • The introduction of resonant link inverters has allowed the use of much higher switching frequencies in induction motor current regulators. The resonant link inverter,however, requries the use of discrete time switching strategies. This type of controller,while giving the best possible performance, is difficult to implement, since motor parameters must be calculated or measured. The delta modulated current regurator (DMCR) has been introduced as a controller without additional state feedback. A discrete pulse modulated current regulator which controls load current is introduced in the paper.

  • PDF

적응 상태 관측자를 이용한 SI 엔진 속도제어 (Adaptive Observer Based Speed Control of SI Engines)

  • 김응석;이효섭;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.693-695
    • /
    • 1999
  • In this paper, the adaptive nonlinear state observer is proposed to estimate the internal states and the nonlinearities of 4-cylinders 4-cycles spark ignition(SI) engines. The observed states and nonlinearities will be used to design the adaptive feedback linearization controller for reducing the fluctuation of idle speed. The simulation results are represented to show the validity of the proposed nonlinear observer-based adaptive controller.

  • PDF

Congestion Control in ATM Networks Using Mixed-LQR

  • Song, Hae-Seok;Seo, Young-Bong;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.57.1-57
    • /
    • 2001
  • The objectives of congestion control in ATM (Asynchronous Transfer Mode) networks are maximum utilization of network resources, acceptable level of low cell loss and fairness among all VCs (Virtual Connections). In this paper, we present a congestion control algorithm which is based on state space model, The proposed controller uses optimal control algorithms (LQR, Mixed-LQR), where control parameters can be designed to ensure the stability of the control loop in a control theoretic sense, over the propagation delay. We show how the control mechanism can be used to design a controller to support ABR service based on feedback of explicit rates. Simulation results are presented to substantiate our claim.

  • PDF

Intelligent control of pneumatic actuator using On/Off solenoid valves

  • Insung Song;Sungman Pyo;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.65.2-65
    • /
    • 2002
  • This paper is concerned with the accurate position control of a rodless pneumatic cylinder using On/Off solenoid valve. A novel Intelligent Modified Pulse Width Modulation(MPWM) is newly proposed. The control performance of this pneumatic cylinder depends on the external loads. To overcome this problem , switching of control parameter using artificial neural network is newly proposed, which estimates external loads on rodless pneumatic cylinder using this training neural network. As an underlying controller, a state feedback controller using position, velocity and acceleration is applied in the switching control the system. The effectiveness of the proposed control algorithms are demonstrated...on/off solenoid valve, load estimation, MPWM, Artificial neural network.

  • PDF

이산 대수 Rccati방정식의 해의 존재 영역 확장 및 $H_{\infty}$베어기 설계 응용 (Extensions of the solution region for a discrete algebraic riccati equation and its application to$H_{\infty}$ controller design)

  • 권욱현;박부견;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.461-466
    • /
    • 1989
  • This paper describes some properties of a discrete algebraic Riccati equation and its application to $H^{\infty}$ control design. The conditions, under which an input weighting matrix can be found for a negative output weighting matrix in order that a solution P for a discrete algebraic equation may exist, are suggested in case of a stable A. This result is applied to a $H^{\infty}$ controller design for the special case of nonsingular B. It is based on a state feedback control law whose objective is to reduce the effect of input disterbances below a prespecified level. This law requires the solution of a modified algebraic Riccati equation, which provides an method for the $H^{\infty}$ optimization control problem approximately.ly.

  • PDF

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

Stable Input-Constrained Neural-Net Controller for Uncertain Nonlinear Systems

  • Jang-Hyun Park;Gwi-Tae Park
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.108-114
    • /
    • 2002
  • This paper describes the design of a robust adaptive controller for a nonlinear dynamical system with unknown nonlinearities. These unknown nonlinearities are approximated by multilayered neural networks (MNNs) whose parameters are adjusted on-line, according to some adaptive laws far controlling the output of the nonlinear system, to track a given trajectory. The main contribution of this paper is a method for considering input constraint with a rigorous stability proof. The Lyapunov synthesis approach is used to develop a state-feedback adaptive control algorithm based on the adaptive MNN model. An overall control system guarantees that the tracking error converges at about zero and that all signals involved are uniformly bounded even in the presence of input saturation. Theoretical results are illustrated through a simulation example.

  • PDF