• Title/Summary/Keyword: Starvation stress

Search Result 73, Processing Time 0.037 seconds

Resistance and Survival of Cronobacter sakazakii under Environmental Stress of Low Temperature (저온 환경에서 Cronobacter sakazakii의 저항과 생존)

  • Kim, Se-Hun;Jang, Sung-Ran;Chung, Hyun-Jung;Bang, Woo-Suk
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.612-619
    • /
    • 2011
  • Cronobacter sakazakii has been isolated from a wide range of environmental sources and from several foods of animal and plant origin. The objective of this study was to determine the resistance of C. sakazakii (ATCC 12868, ATCC 29004, and ATCC 29544) in cold, cold-freeze thaw, cold-acid, and cold starvation-freeze thaw stress. The number of C. sakazakii decreased to 1 log CFU/mL at $5^{\circ}C$ (cold storage) for 10 days. When C. sakazakii was cultivated at a low temperature ($13^{\circ}C$), the population of C sakazakii ATCC 12868 and 29004 increased to $10^9$ CFU/mL, and the population of C. sakazakii ATCC 29544 increased to $10^8$ CFU/mL. For C. sakazakii ATCC 12868 and 29004, the cold-adapted cells ($5^{\circ}C$ 24 hr) decreased by 4 log CFU/mL, and the low-temperature-cultivated cells ($13^{\circ}C$) decreased by 0.5 log CFU/mL. In this study, low-temperature cultivation enhanced the freeze-thaw cross-resistance due to the metabolic changes in the cells. Cold stress ($5^{\circ}C$ 48 hr, $13^{\circ}C$ cultivation) enhanced the cold-acid cross-resistance. The cold-starved cells in the sterilized 0.1% peptone water enhanced the freeze-thaw cross-resistance with significant differences (p<0.05). Therefore, the increased tolerance of the cold-adapted or low-temperature-cultivated C. sakazakii cells to freeze-thaw, acid, or starvation suggests that such environments should be considered when processing minimally processed foods or foods with extended shelf life.

Systemic Statistical Optimization of Astaxanthin Inducing Methods in Haematococcus pluvialis cells -Statistical Optimization of Astaxanthin Production in Haematococcus

  • Kim, Sun-Hyoung;Jeong, Sung Eun;Hong, Seong-Joo;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • The production of astaxanthin in the microalga Haematococcus pluvialis has been investigated using a sequential methodology based on the application of two types of statistical designs. The employed preliminary experiment was a fractional factorial design $2^6$ in which the factors studied were: excessive irradiance and nitrate starvation, phosphate deficiency, acetate supplementation, salt stress, and elevated temperature. The experimental results indicate that the amount of astaxanthin accumulation in the cells can be enhanced by excessive irradiance and nitrate starvation whereas the other factors tested did not yield any enhancement. In the subsequent experiment, a central composite design was applied with four variables, light intensity, nitrate, phosphate, and acetate, at five levels each. The optimal conditions for the highest astaxanthin production were found to be $1040{\mu}E/(m^2{\cdot}s)$ light intensity, 0.04 g/L nitrate, 0.31 g/L phosphate, 0.05 g/L acetate concentration.

A Role for Arabidopsis miR399f in Salt, Drought, and ABA Signaling

  • Baek, Dongwon;Chun, Hyun Jin;Kang, Songhwa;Shin, Gilok;Park, Su Jung;Hong, Hyewon;Kim, Chanmin;Kim, Doh Hoon;Lee, Sang Yeol;Kim, Min Chul;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.111-118
    • /
    • 2016
  • MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.

Overexpression of S-Adenosylmethionine Synthetase in Recombinant Chlamydomonas for Enhanced Lipid Production

  • Jeong Hyeon Kim;Joon Woo Ahn;Eun-Jeong Park;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.310-318
    • /
    • 2023
  • Microalgae are attracting much attention as promising, eco-friendly producers of bioenergy due to their fast growth, absorption of carbon dioxide from the atmosphere, and production capacity in wastewater and salt water. However, microalgae can only accumulate large quantities of lipid in abiotic stress, which reduces productivity by decreasing cell growth. In this study, the strategy was investigated to increase cell viability and lipid production by overexpressing S-adenosylmethionine (SAM) synthetase (SAMS) in the microalga Chlamydomonas reinhardtii. SAM is a substance that plays an important role in various intracellular biochemical reactions, such as cell proliferation and stress response, and the overexpression of SAMS could allow cells to ithstand the abiotic stress and increase productivity. Compared to wild-type C. reinhardtii, recombinant cells overexpressing SAMS grew 1.56-fold faster and produced 1.51-fold more lipids in a nitrogen-depleted medium. Furthermore, under saline-stress conditions, the survival rate and lipid accumulation were 1.56 and 2.04 times higher in the SAMS-overexpressing strain, respectively. These results suggest that the overexpression of SAMS in recombinant C. reinhardtii has high potential in the industrial-scale production of biofuels and various other high-value-added materials.

Handling of Harvested Broiler (육계 출하 후 관리)

  • Kim Dong-Hun;Yoo Young-Mo;Cho Soo-Hyun;Park Beom-Young;Kim Yong-Kon;Lee Jong-Moon
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.424-432
    • /
    • 2004
  • The handling and transport of broiler birds from farm to the processing factory is known to cause injury and dead. The preslaughter period can be compromised through thermal stress, emotional stress, starvation, dehydration, metabolic exhaustion, trauma to the skin and bone fraction resulting in bruising and dead. This paper focuses on the control points of individual post Harvest stages by reference to recent literature. In catching, the injuries and deads are caused from fracture of bone, skin damage and hipbone dislocation. It can be improved by training the catchers. The primary factor of dead during transportation is from thermal stress. It is related to stocking density, type of crate and vehicle, ventilation and transportation time. Of the factors, the ventilation is very important. The holding place should be built with consideration of protection from the hostile external environment. There were not much progresses in this area, however, many researches are conducting to focus on animal welfare in European Union. Recently, it is rapidly changed in marketing custom from whole carcass to portion cut in Korea. This means the increase of economic loss due to the mishandling at post harvest. The systematic approach is demanded for this area.

Stress Responses through Heat Shock Transcription Factor in S. cerevisiae

  • Hahn, Ji-Sook;Hu, Zhanzhi;Thiele, Dennis J.;Lyer, Vishwanath R.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2005.05a
    • /
    • pp.105-109
    • /
    • 2005
  • Heat Shock Transcription Factor (HSF), and the promoter heat Shock Element (HSE), are among the most highly conserved transcriptional regulatory elements in nature. HSF mediates the transcriptional response of eukaryotic cells to heat, infection and inflammation, pharmacological agents, and other stresses. While HSF is essential for cell viability in yeast, oogenesis and early development in Drosophila, extended life-span in C. elegans, and extra-embryonic development and stress resistance in mammals, little is known about its full range of biological target genes. We used whole genome analyses to identify virtually all of the direct transcriptional targets of yeast HSF, representing nearly three percent of the genomic loci. The majority of the identified loci are heat-inducibly bound by yeast HSF, and the target genes encode proteins that have a broad range of biological functions including protein folding and degradation, energy generation, protein secretion, maintenance of cell integrity, small molecule transport, cell signaling, and transcription. Approximately 30% of the HSF direct target genes are also induced by the diauxic shift, in which glucose levels begin to be depleted. We demonstrate that phosphorylation of HSF by Snf1 kinase is responsible for expression of a subset of HSF targets upon glucose starvation.

  • PDF

Korean Red Ginseng Tonic Extends Lifespan in D. melanogaster

  • Kim, Man Su
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.241-245
    • /
    • 2013
  • Aging is the single most important risk factor that increases susceptibility to many forms of diseases. As such, much effort has been put forward to elucidate the mechanisms behind the processes of aging and to discover novel compounds that retain anti-aging activities. Korean red ginseng has been used for a variety of medical purposes in eastern countries for several thousands of years. It has been shown that Korean red ginseng affects a number of biological activities including, but not limited to, anti-inflammatory, anti-oxidative and anti-diabetic pathways. However, few studies have been performed to evaluate its anti-aging effects with an in vivo system. Here Drosophila melanogaster as an in vivo model organism demonstrates that Korean red ginseng tonic extends lifespan, increases resistance to starvation stress and prevents weight gain. This data suggest that Korean red ginseng may regulate organisms' metabolism in favor of extending lifespan.

Biofilm Formation of Food-borne Pathogens under Stresses of Food Preservation (식품 보존 스트레스에서의 식중독세균의 생체막 생성)

  • Lee, No-A;Noh, Bong-Soo;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.135-139
    • /
    • 2006
  • Most bacteria form biofilm as self-defence system, making efficient food sanitization, preservation, and instrument washing more difficult. Biofilm formation of Salmonella, E. coli, B. cereus, and S. aureus was observed during 24 hr food preservations by performing microtiter plate and glass wool assays. Most cells formed biofilm and attached onto glass wool. When biofilm formation and injury were analyzed on the microtiter plate, 10 and 20% acid-injured E. coli and S. aureus, respectively, 30-50% cold temperature $(4^{\circ}C)-injured$ B. cereus and E. coli, and 30-55% 6% sodium chloride solution-injured Salmonella showed significant biofilm formation. Results indicate biofilm formation level differed within species depending on type of stress.

The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse

  • Lee, Hyo Gun;Khummuang, Saichit;Youn, Hyun-Hee;Park, Jeong-Woong;Choi, Jae-Young;Shin, Teak-Soon;Cho, Seong-Keun;Kim, Byeong-Woo;Seo, Jakyeom;Kim, Myunghoo;Park, Tae Sub;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1095-1103
    • /
    • 2019
  • Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme $1{\alpha}$ ($IRE1{\alpha}$)-X-box protein 1 (XBP1) is the most conserved pathway involved in the UPR and is the main component that mediates $IRE1{\alpha}$ signalling to downstream ER-associated degradation (ERAD)- or UPR-related genes. XBP1 is a transcription factor synthesised via a novel mechanism called 'frame switch splicing', and this process has not yet been studied in the horse XBP1 gene. Therefore, the aim of this study was to confirm the frame switch splicing of horse XBP1 and characterise its dynamics using Thoroughbred muscle cells exposed to heat stress. Methods: Primary horse muscle cells were used to investigate heat stress-induced frame switch splicing of horse XBP1. Frame switch splicing was confirmed by sequencing analysis. XBP1 amino acid sequences and promoter sequences of various species were aligned to confirm the sequence homology and to find conserved cis-acting elements, respectively. The expression of the potential XBP1 downstream genes were analysed by quantitative real-time polymerase chain reaction. Results: We confirmed that splicing of horse XBP1 mRNA was affected by the duration of thermal stress. Twenty-six nucleotides in the mRNA of XBP1 were deleted after heat stress. The protein sequence and the cis-regulatory elements on the promoter of horse XBP1 are highly conserved among the mammals. Induction of putative downstream genes of horse XBP1 was dependent on the duration of heat stress. We confirmed that both the mechanisms of XBP1 frame switch splicing and various binding elements found in downstream gene promoters are highly evolutionarily conserved. Conclusion: The frame switch splicing of horse XBP1 and its dynamics were highly conserved among species. These results facilitate studies of ER-stress in horse.

Effects of Mixing Performance and Conditioned Medium on hCTLA4Ig Production in Transgenic Rice Cell Suspension Cultures (형질전환 벼 현탁세포 배양에서 혼합효율과 조정배지가 hCTLA4Ig 생산에 미치는 영향)

  • Choi, Hong-Yeol;Park, Jun-Yong;Nam, Hyung-Jin;Gong, Mi-Kyung;Yoo, Ye-Ri;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.307-312
    • /
    • 2015
  • Transgenic rice cells using RAmy3D promoter can provide high productivity, and the production of recombinant protein is induced by sugar starvation. In this system, productivity was reduced during the scale-up processes. To ensure the influences of shear stress and oxygen transfer rate, working volume and mixing performances were investigated under various agitation speeds and working volumes. In addition, inoculation methods including suspended cells and filtered cells were compared. Working volumes and shaking speeds were 300, 450 mL and 80, 120 rpm, respectively. Hydrodynamic environment of each condition was measured numerically like mixing time and $k_La$. Good mixing performance and high shear stress were measured at high agitation speed and low volume. The highest level of hCTLA4Ig was 30.7 mg/L at 120 rpm, 300 mL. When conditioned medium was used for inoculation, increased cell growth was noticed during the day 0~4 and decreased slower than filtered cells. Compared with filtered cells, the maximum hCTLA4Ig level reached 37.8 mg/L at 120 rpm, 300 mL and lower protease activity level was observed. In conclusion mixing performance is critical factor for productivity and conditioned medium can have a positive effect on damaged cells caused by hydrodynamic shear stress.