Browse > Article

Biofilm Formation of Food-borne Pathogens under Stresses of Food Preservation  

Lee, No-A (Department of Food and Bioengineering, Kyungwon University)
Noh, Bong-Soo (Department of Food and Microbial Technology, Seoul Woman's University)
Park, Jong-Hyun (Department of Food and Bioengineering, Kyungwon University)
Publication Information
Korean Journal of Food Science and Technology / v.38, no.1, 2006 , pp. 135-139 More about this Journal
Abstract
Most bacteria form biofilm as self-defence system, making efficient food sanitization, preservation, and instrument washing more difficult. Biofilm formation of Salmonella, E. coli, B. cereus, and S. aureus was observed during 24 hr food preservations by performing microtiter plate and glass wool assays. Most cells formed biofilm and attached onto glass wool. When biofilm formation and injury were analyzed on the microtiter plate, 10 and 20% acid-injured E. coli and S. aureus, respectively, 30-50% cold temperature $(4^{\circ}C)-injured$ B. cereus and E. coli, and 30-55% 6% sodium chloride solution-injured Salmonella showed significant biofilm formation. Results indicate biofilm formation level differed within species depending on type of stress.
Keywords
biofilm; food-borne pathogen; preservative stress; microtiter plate assay; glass wool assay;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Somers EB, Schoeni JL. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria nionocytogenes and Salmonella typhimurium Int. J. Food Microbiol. 22: 269-276 (1994)   DOI   ScienceOn
2 Soot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J. Food Prot. 61: 1293-1298 (1998)   DOI
3 Keren S, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonella enterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 71: 1163-1168(2005)   DOI   ScienceOn
4 Marinda C, Theron J. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Envir. Microbiol. 68: 2770-2780 (2002)   DOI
5 Djordjevic M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68: 2950-2958 (2002)   DOI
6 Mosteller TM. Sanitizer efficacy toward attached bacteria in a simulated milk pipeline system using pure and mixed cultures. Dissertation Abstracts lnt. 54: 4978-B (1993)
7 Wang G, Doyle M. Survival of enterohaemorrhagic Escherichia coli O157:H7 in water, J. Food Prot. 61: 662-667 (1998)   DOI
8 O'Toole, GA, Kolter R. Initiation of biofilrn formation in Pseudomonas fluorescens WCS365 proceed via multiple, convergent signaling pathways: Agenetic analysis. Mol. Microbiol. 28: 449-461 (1998)   DOI   ScienceOn
9 Nicky C, O'Toole GA. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 185: 3214-3217 (2003)   DOI
10 Flahaut S, Frere J, Auffray Y. The oxidative stress response in Enterococcus faecalis: relationship between $H_2O_2$ tolerance and $H_2O_2$ stress proteins. Lett. Appl. Microbiol. 26: 259-264 (1998)   DOI   ScienceOn
11 Res TJ, Frank JF. Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quatrnary ammonium sanitizer as determined by direct viable and agar plate count. J. Food. Prot. 56: 573-576 (1993)   DOI
12 Pickett E, Murano EA. Sensitivity of Listeria monocytogenes to sanitizers after exposure to a chemical shock. J. Food Prot. 59: 374-378 (1996)   DOI
13 Stanle NR, Britton AD. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185: 1951-1957 (2003)   DOI
14 Farrell BL. Attachment of Escherichia coli O157:H7 in ground beef to meat grinders and survival alter sanitation with chlorine and peroxyacetic acid. J . Food Prot. 61: 817-822 (1998)   DOI
15 Costerton JW, Cheng G, Geesey TI. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435-464 (1987)   DOI   ScienceOn
16 Basar T, Guermonprez P. Delivery of CD8 T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Appl. Environ. Microbiol. 68: 2770-2780 (2003)   DOI
17 Jee-Hoon R, Larry R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 71: 247-254 (2005)   DOI   ScienceOn
18 Langmark J, Michael V. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system. Appl. Environ. Microbiol. 71: 706-712 (2005)   DOI   ScienceOn
19 Taormina PJ, Beuchat LR. Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Appl. Environ. Microbiol. 67: 2555-2563 (2001)   DOI   ScienceOn
20 Srinivasan R, Stewart PS, Griebe T. Biofilm parameters influencing biocide efficacy. Biotechnol. Bioeng. 46: 553-560 (1995)   DOI   ScienceOn
21 Rowbury RJ. Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol. 90:677-695(2001)   DOI   ScienceOn
22 Hengge R. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2: 148-152 (1999)   DOI   ScienceOn