Browse > Article
http://dx.doi.org/10.15433/ksmb.2014.6.1.031

Systemic Statistical Optimization of Astaxanthin Inducing Methods in Haematococcus pluvialis cells -Statistical Optimization of Astaxanthin Production in Haematococcus  

Kim, Sun-Hyoung (National Marine Bioenergy Research Center & Department of Biological Engineering, Inha University)
Jeong, Sung Eun (National Marine Bioenergy Research Center & Department of Biological Engineering, Inha University)
Hong, Seong-Joo (National Marine Bioenergy Research Center & Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (National Marine Bioenergy Research Center & Department of Biological Engineering, Inha University)
Publication Information
Journal of Marine Bioscience and Biotechnology / v.6, no.1, 2014 , pp. 31-40 More about this Journal
Abstract
The production of astaxanthin in the microalga Haematococcus pluvialis has been investigated using a sequential methodology based on the application of two types of statistical designs. The employed preliminary experiment was a fractional factorial design $2^6$ in which the factors studied were: excessive irradiance and nitrate starvation, phosphate deficiency, acetate supplementation, salt stress, and elevated temperature. The experimental results indicate that the amount of astaxanthin accumulation in the cells can be enhanced by excessive irradiance and nitrate starvation whereas the other factors tested did not yield any enhancement. In the subsequent experiment, a central composite design was applied with four variables, light intensity, nitrate, phosphate, and acetate, at five levels each. The optimal conditions for the highest astaxanthin production were found to be $1040{\mu}E/(m^2{\cdot}s)$ light intensity, 0.04 g/L nitrate, 0.31 g/L phosphate, 0.05 g/L acetate concentration.
Keywords
Haematococcus pluvialis; astaxanthin; statistical optimization of astaxanthin inducing methods; fractional factorial design; central composite design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fan, L., A. Vonshak, and S. Boussiba. 1994. Effect of temperature and irradiance on growth of Haematococcus pluvialis (Chlotophytceae). J. Phycol. 30, 829-833.   DOI   ScienceOn
2 Borowitzka, M. A., J. M. Huisman, and A. Osborn. 1991. Culture of astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycology 3, 295-304.   DOI
3 Choi, S.-L., I. S. Suh, and C.-G. Lee. 2003. Lumostatic operation of bubble colimn photobioreactors for Haematococcus pluvilis cultures using a specific light uptake rate as a contral parameter. Enzyme Microb. Technol. 33, 403-409.   DOI   ScienceOn
4 Cordero, B., A. Otero, M. Patino, B. O. Arredondo, and J. Fabregas. 1996. Astaxanthin production from the green alga Haematococcus pluvialis with different stress conditions. Biotech. Lett. 18, 213-218.   DOI
5 Ellekjar, M. R. and S. Bisgaard. 1998. The use of experimental design in the development of new products. IJQS 3, 254-274.
6 Gong, X. and F. Chen. 1997. Optimization of culture medium for growth of Haematococcus pluvialis. J. Appl. Phycol. 9,437-444.   DOI   ScienceOn
7 Gong, X. and F. Chen. 1998. Influence of medium components on astaxanthin content and production of Haematococcus pluvialis. Process Biochem. 33, 385-391.   DOI   ScienceOn
8 Harker, M., A. J. Tsavalos, and A. J. Young. 1995. Use of response surface methodology to optimise carotenogenesis in the microalga, Haematococcus pluvialis. J. Appl. Phycology 7, 399-406.   DOI   ScienceOn
9 Harker, M., A. J. Tsavalos, and A. J. Young. 1996. Factors Reponsible for Astaxanthin Formation in the Chlorophyte Haematococcus pluvialis. Bioresource Technol. 55, 207-214.   DOI   ScienceOn
10 Johnson, N. and F. C. Leone. 1977. Statistics and experimental design in enfineering and the physical sciences. Toronto, Canada: John Wiley & Sons, Inc.
11 Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai. 1992. Effects of Light Intensity, Light Quality, and Illumination Cycle on Astaxanthin Formation in a Green Alga, Haematococcus pluvialis. J. Ferment. Bioengng 74, 61-63.   DOI   ScienceOn
12 Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis. Appl. Envir. Microbiol. 59, 867-873.
13 Lorenz, R. T. and G. R. Cysewski. 2000. Commercial potential for Haematococcus microalgae as a natural source fo astaxanthin. Tibtech 18, 160-167.   DOI   ScienceOn
14 Lorenz, R. T. 2001. HPLC and spectrometric analysis of carotenoids from Haematococcus algae oleoresin. BioAstin/NatuRose$^{TM}$TechnicalBulletin 20, 1-9.
15 Orosa, M., E. Torres, P. Fidalgo, and L. Abalde. 2000. Production and analysis of secondary carotenoids in green algae. J. Appl. Phycol. 12, 553-556.   DOI
16 Margalith, P. Z. 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol. 51, 431-438.   DOI   ScienceOn
17 Mason, R. L., R. F. Gunst, and J. L. Hess. 1989. Statistical design and anaysis of experiments with applications to engineering and science. Tornto, Canada: John Wiley & Sons, Inc.
18 Montgomery, D. C. 1997. Design and analysis of experiments. United States of America: John Wiley & Sons, Inc.
19 Orosa, M., J. F. Valero, C. Herrero, and J. Abalde. 2001. Comparision of accumulation of astaxanthin in Haematococcus pluvialis and oter green microalgae under N-starvation and high light conditions. Biotech. Lett. 23, 1079-1085.   DOI   ScienceOn
20 Park, E. K. and C. K. Lee. 2001. Astaxnanthin production by Haematococcus pluvialis under various light intensities and wavelength. J. Microbiol. Biotechnol. 11, 1024-1030.
21 Pujari, V. and T. S. Chanadra. 2000. Statistical optimization of medium components for enhanced riboflavin production by UV-mutant of Eremothecium ashbyii. Process Biochem. 36, 31-37.   DOI   ScienceOn
22 Ramirez, J., H. Gutierrez, and A. Gschaedler. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol. 88, 259-268.   DOI   ScienceOn
23 Sarada, R., U. Tripathi, and G. A. Ravishankar. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochem. 37, 623-627.   DOI   ScienceOn
24 Stein, J. R. 1973. Culture methods and growth measurements. Handbook of phycological methods. London, UK: Cambridge University Press. pp 13-14.
25 Tripathi, U., R. Sarada, R. Rao, and G. A. Ravishanker. 1999. Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresource Technol. 68, 197-199.   DOI   ScienceOn
26 Yates, P. and R. W. Mee. 2000. Fractional factorial designs that restrict the number of treatment combinations for factor subsets. Qual. Reliab. Engng. Int. 16, 343-354.   DOI
27 Yuan, J. P. and F. Chen. 1999. Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification. J. Agric. Food Chem. 47, 31-35.   DOI   ScienceOn
28 Yuan, J. P. and F. Chen. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strian of the microalga Heamatococcus pluvialis. Food Chem. 68, 443-448.   DOI   ScienceOn
29 Choi, Y. E., Y.-S. Yun, and J. M. Park. 2002. Evaluation of factors promotion astaxanthin production by a unicelluar green alga, Haematococcus pluvialis, with fractional factorial design. Biotechnol. Prog. 18, 1170-1175.   DOI   ScienceOn
30 Zhang, D. H., Y. K. Lee, M. L. Ng, and S. M. Phang. 1997. Composition and accumulation of secondary carotenoids in Chlorococcum sp. J. Appl. Phycol. 9, 147-155.   DOI   ScienceOn
31 Kakizono, T., M. Kobayashi, and S. Nagai. 1992. Effect of carbon/nitrogen ratio on Encystment accompanied with Astaxanthin formation in a Green Alga, Haematococcus pluvialis. J. Ferment. Bioengng. 74, 403-405.   DOI   ScienceOn
32 Tjahjono, A. E., Y. Hayama, T. Kakizono, and S. Nagai. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechn. Lett. 16, 133-138.   DOI   ScienceOn