• Title/Summary/Keyword: Standard testing building

Search Result 88, Processing Time 0.027 seconds

Automation of Dobson Spectrophotometer(No.124) for Ozone Measurements (돕슨 분광광도계(No.124)의 오존 자동관측시스템화)

  • Kim, Jhoon;Park, Sang-Seo;Moon, Kyung-Jung;Koo, Ja-Ho;Lee, Yun-Gon;Miyagawa, Koji;Cho, Hi-Ku
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • Global Environment Laboratory at Yonsei University in Seoul ($37.57^{\circ}N$, $126.95^{\circ}E$) has carried out the ozone layer monitoring program in the framework of the Global Ozone Observing System of the World Meteorlogical Organization (WMO/GAW/GO3OS Station No. 252) since May of 1984. The daily measurements of total ozone and the vertical distribution of ozone amount have been made with the Dobson Spectrophotometer (No.124) on the roof of the Science Building on Yonsei campus. From 2004 through 2006, major parts of the manual operations are automated in measuring total ozone amount and vertical ozone profile through Umkehr method, and calibrating instrument by standard lamp tests with new hardware and software including step motor, rotary encoder, controller, and visual display. This system takes full advantage of Windows interface and information technology to realize adaptability to the latest Windows PC and flexible data processing system. This automatic system also utilizes card slot of desktop personal computer to control various types of boards in the driving unit for operating Dobson spectrophotometer and testing devices. Thus, by automating most of the manual work both in instrument operation and in data processing, subjective human errors and individual differences are eliminated. It is therefore found that the ozone data quality has been distinctly upgraded after automation of the Dobson instrument.

A Study of Winterization Design for Helideck Using the Heating Cable on Ships and Offshore Platforms (열선을 이용한 해양플랜트 헬리데크의 방한설계에 관한 연구)

  • Bae, So Young;Kang, Gyu-Hong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In recent years, the demand for ships and offshore platforms that can navigate and operate through the Arctic Ocean has been rapidly increasing due to global warming and large reservoirs of oil and natural gas in the area. Winterization design is one of the key issues to consider in the robust structural safety design and building of ships that operate in the Arctic and Sub-Arctic regions. However, international regulations for winterization design in Arctic condition regulated that only those ships and offshore platforms with a Polar Class designation and/or an alternative standard. In order to cope with the rising demand for operating in the Arctic region, existing and new Arctic vessels with a Polar Class designation are lacking to cover for adequate winterization design with HSE philosophy. Existing ships and offshore platform was not designed based on reliable data based on numerical and experiment studies. There are only designed as a performance and functional purposes. It is very important to obtain of reliable data and provide of design guidance of the anti-icing structures by taking the effects of low temperature into consideration. Therefore, the main objective of this paper reconsiders anti-icing design of aluminum helideck using the heating cable. To evaluate of reliable data and recommend of anti-icing design method, various types of analysis and methods can be applied in general. In the present study, finite element method carried out the thermal analysis with cold chamber testing for performance and capacity of heating cables.

Performance Evaluation of Bridge Deck Materials based on Ordinary Portland Cement Concrete (보통 포틀랜드 콘크리트 기반 교면포장 재료 성능 평가)

  • Nam, Jeong-Hee;Jeon, Seong Il;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.129-137
    • /
    • 2017
  • PURPOSES : The purpose of this study is to develop bridge deck concrete materials based on ordinary Portland cement concrete, and to evaluate the applicability of the developed materials through material properties tests. METHODS : For field implementation, raw material (cement, fine aggregate, and coarse aggregate) properties, fresh concrete properties (slump and air content), strength (compressive, flexural and bond strength) gain, and durability (freeze-thaw resistance, scaling resistance, and rapid chloride penetrating resistance) performance were evaluated in the laboratory. RESULTS : For the selected binder content of $410kg/m^3$, W/B = 0.42, and S/a = 0.48, the following material performance results were obtained. Considering the capacity of the deck finisher, a minimum slump of 150 mm was required. At least 6 % of air content was obtained to resist freeze-thaw damage. In terms of strength, 51.28 MPa of compressive strength, 7.41 MPa of flexural strength, and 2.56 MPa of bond strength at 28 days after construction were obtained. A total of 94.9 % of the relative dynamic modulus of elasticity after 300 cycles of freeze-thaw resistance testing and $0.0056kg/m^2$ of weight loss in a scaling resistance test were measured. However, in a chloride ion penetration resistance test, the result of 3,356 Coulomb, which exceeds the threshold value of the standard specification (1000 Coulomb at 56 days) was observed. CONCLUSIONS : Instead of using high-performance modified bridge deck materials such as latex or silica fume, we developed an optimum mix design based on ordinary Portland cement concrete. A test construction was carried out at ramp bridge B (bridge length = 111 m) in Gim Jai City. Immediately after the concrete was poured, the curing compound was applied, and then wet mat curing was applied for 28 days. Considering the fact that cracks did not occur during the monitoring period, the applicability of the developed material is considered to be high.

A Study on the Toxic Gases and Smoke Hazard of PASCON Trough (파스콘 트로프의 연기유독성에 관한 연구)

  • Lee, Chang-Woo;Hyun, Seong-Ho;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.1-7
    • /
    • 2006
  • The aim of the research is to estimate the effect of smoke and combustion gases on humane body indirectly through measuring the toxicity of those. For this purpose, the toxic index of smoke and combustion gases was investigated by smoke hazard test and analysis of smoke which were conducted by KS F 2271 and NES 713 method respectively. It i s proved by KS F 2271 method that PASCON trough is suitable to the testing standard of interior material and construction of building. In addition, it is identified by NES 713 method that combustion gases occurring in PASCON product were only carbon dioxide and carbon monoxide, and the smoke index of those was 0.944. This value means that the hazard effect of smoke gases on humane ! body can possibly happens when exposed to the smoke gases for more than 30 min. In aspect of the domestic situation that have not regulated the hazard estimation and the emissions of smoke when the flame retarding ability of the products have been requested, the toxic indexes of PASCON products are comparatively low.

Improvement and Evaluation of Seismic Performance for Reinforced Concrete Beam-Column Joints Using High Performance Embedded FRP (고성능 FRP를 활용한 철근콘크리트 보-기둥 접합부의 내진 성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.385-392
    • /
    • 2011
  • In this study, experimental research was carried out to evaluate and improve the seismic performance of reinforced concrete beam-column joint regions using strengthening materials (steel plate, carbon fiber sheet, and embedded carbon fiber rod) in existing reinforced concrete buildings. Six specimens of retrofitted beam-column joints are constructed using various retrofitting materials and tested for their retrofit performances. Specimens designed by retrofitting the beam-column joint regions (LBCJ series) of existing reinforced concrete building showed a stable mode of failure and an increase in load-carrying capacity due to the effect of crack control at the time of initial loading and confinement from retrofitting materials during testing. Specimens of LBCJ series, designed by the retrofitting of FRP in reinforecd beam-column joint regions increased its maximum load carrying capacity by 26~50% and its energy dissipation capacity by 13.0~14.4% when compared to standard specimen of LBCJC with a displacement ductility of 4.

Kubernetes of cloud computing based on STRIDE threat modeling (STRIDE 위협 모델링에 기반한 클라우드 컴퓨팅의 쿠버네티스(Kubernetes)의 보안 요구사항에 관한 연구)

  • Lee, Seungwook;Lee, Jaewoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1047-1059
    • /
    • 2022
  • With the development of cloud computing technology, container technology that provides services based on a virtual environment is also developing. Container orchestration technology is a key element for cloud services, and it has become an important core technology for building, deploying, and testing large-scale containers with automation. Originally designed by Google and now managed by the Linux Foundation, Kubernetes is one of the container orchestrations and has become the de facto standard. However, despite the increasing use of Kubernetes in container orchestration, the number of incidents due to security vulnerabilities is also increasing. Therefore, in this paper, we study the vulnerabilities of Kubernetes and propose a security policy that can consider security from the initial development or design stage through threat analysis. In particular, we intend to present a specific security guide by classifying security threats by applying STRIDE threat modeling.

Technical Review on Methodology of Generating Exposure Scenario in eSDS of EU REACH (유럽 신화학물질관리제도의 eSDS에 첨부되는 노출시나리오 작성법 개발 동향)

  • Choe, Eun-Kyung;Kim, Jong-Woon;Kim, Sang-Hun;Byun, Sung-Won
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.285-299
    • /
    • 2011
  • As one of the REACH obligations, the extended safety data sheet (eSDS) should be communicated within the supply chain under the REACH Regulation. Based on technical guidance documents published on the ECHAs website and survey of EU's recent REACH-related informations, this paper includes a study on details of how to develop exposure scenarios (ES) such as structure of ES, process of ES develpoment, standard workflows and key input data to develop ES with an introduction of eSDS concept. This paper also contains an overview on operational conditions (OCs) and risk management measures (RMMs) that are what to consider when building an ES. The structure of Chesar (Chemical Safety Assessment and Report tool) developed by European Chemicals Agency (ECHA) is studied with a review of the available exposure estimation tools for workers, environment and consumers. Case example of generic exposure scenario (GES) for organic solvent is presented. To guide Korean EU-exporting companies, their participating roles in three steps of preparing ES are addressed.

Improvement and Seismic Performance Evaluation of RC Exterior Beam-Column Joints Using Recycled Coarse Aggregate with Hybrid Fiber (순환굵은골재 치환과 하이브리드섬유 혼입에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Jae-Hoon;Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.160-169
    • /
    • 2015
  • In this study, experimental research was carried out to improve the seismic performance of reinforced concrete exterior beam-column joint regions using replacing recycled coarse aggregate with hybrid fiber (steel fiber+PVA fiber) in existing reinforced concrete building. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and bridge of retrofitting hybrid fiber during testing. Specimens BCJGPSR series, designed by the retrofitting of replacing recycled coarse aggregate with hybrid fiber in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.01~1.04 times and its energy dissipation capacity by 1.06~1.29 times in comparison with standard specimen BCJS. Also, specimen $BCJGPSR_1$ were increased its energy dissipation capacity by 1.33~1.65 times in comparison with specimens BCJS, BCJP and BCJGPR series for a displacement ductility of 9.

A Study on the Improvement of Construction Cost Standards for Pipe Laying and Joining Work (관 부설 및 접합공사 공사비산정기준 개선에 관한 연구)

  • Oh, Jae-Hoon;Ahn, Bang-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.675-684
    • /
    • 2020
  • To prevent safety accidents caused by aging pipe infrastructure and to maintain water quality, construction projects for water and sewage pipes are actively conducted across Korea. This study analyzed the criteria situations, site survey details, and regulation revisions related to the calculation of construction cost standards for pipe laying and joining work. The analysis showed that the major causes for revision are the unclear construction scope, limitations in implementing some pipe materials due to installation facility types, workforce focused on ordinary labor, limitations of manual laying work, and the lack of tool hire cost and machine expense-calculation criteria. Field studies were conducted to categorize the pipes according to their features, in addition to identifying the use of lifting heavy equipment and light equipment. In addition, excavation and testing work conducted in connection to pipe laying, as well as the use of skilled labor, were investigated. The current study clarified the work scope through new common items, provides an organization based on the pipe material, adjusted the workforce ratio to focus more on skilled labor, and developed grounds for calculating machine expenses. These revisions were estimated to save approximately 1.28% of the construction costs in each project according to an analysis of the construction cost impact study. truction costs in each project, according to an analysis of construction cost impact study.

The Characteristics of Mortar According to the Water Cement Ratio and Mudflats Replacement Ratio (물-시멘트비 및 갯벌 치환율에 따른 모르타르의 특성)

  • Yang, Seong-Hwan;Lee, Heung-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • This research analyzes the properties of mortar following the rise in water-cement ratio and applicability as an eco-friendly construction supply by using the mudflats of a dredged arena as a substitute for aggregate. The results of a experiment of the flow showed that the flow value decreases as the amount of mudflats increases. A test for chloride content showed that the chloride content increases with the amount of mudflats. In the compression of specimen mixed with mudflat and the testing of tensile strength, the strength weakened as the addition ratio of mudflats rose. However, with 14-day strength as the standard, most specimen showed more strength than the plain, and 14-day strength was higher than 28-day strength. It appears to be experimental error in the mixing process from the viscosity and cohesion of mudflats, and it is considered that there will be a need for an experiment on mixing methods of mudflats in the future. The compressive strength of this research was the strongest with 70% in water-cement ratio, and the tensile strength was strongest with 80% in water-cement ratio. In the evaluation of surface analysis, 70% water-cement ratio, which is finest in strength, mixing, and compactness, was selected to analyze the roughness of the surface, and the results showed that the surface became smoother as the addition ratio of mudflats increases. In conclusion, it appears that 70% water-cement ratio is the optimal mixing ratio for mortar and 10 to 30% addition ratio of mudflats the optimal ratio. It also appears that the application of interior finishing material like bricks and tiles and interior plastering material using the mudflats are possible.