• Title/Summary/Keyword: Standard k-$\epsilon$ Model

Search Result 91, Processing Time 0.018 seconds

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

A Study of Applicability of a RNG $k-\varepsilon$ Model (RNG $k-\varepsilon$ 모델의 적용성에 대한 연구)

  • Yang, Hei-Cheon;Ryou, Hong-Sun;Lim, Jong-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1149-1164
    • /
    • 1997
  • In this study, the applicability of the RNG k-.epsilon. model to the analysis of the complex flows is studied. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretized by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-.epsilon. model of three complex flows, i.e., the flow over a backward-facing step and a blunt flat plate, the flow around a 2D model car are compared to these from the standard k-.epsilon. model and experimental data. That of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly and the spray characteristics within a chamber of direct injection model engine are compared to these from the standard k-.epsilon. model and experimental data. The results of reattachment length, separated eddy size, average surface pressure distribution using the RNG k-.epsilon. model show more reasonable trends comparing with the experimental data than those using the modified k-.epsilon. model. Although the predicted rms velocity using the modified k-.epsilon. model is lower considerably than the experimental data in incylinder flow with poppet valve, predicted axial and radial velocity distributions at the valve exit and in-cylinder region show good agreements with the experimental data. The spray tip penetration predicted using the RNG k-.epsilon. model is more close to the experimental data than that using the modified k-.epsilon. model. The application of the RNG k-.epsilon. model seems to have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly and the spray characteristics over the modified k-.epsilon. model.

Evaluation of the Anisotropic k - ${\epsilon}$ Turbulence Model by the Numerical Analysis of Axisymmetric Swirling Turbulent Flow (축대칭 선회난류의 수치해석에 의한 비등방 k - ${\epsilon}$ 난류모델의 評價)

  • Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.39-44
    • /
    • 1996
  • To overcome weak poinks of the standard k-${\varepsilon}$ turbulence model when applied to complex turbulent flows, various modified models were proposed. But their effects are confined to special flow fields. They have still some problems. Recently, an anisotropic k-${\varepsilon}$ turbulence model was also proposed to solve the drawback of the standard k-${\varepsilon}$ turbulence model. This study is concentrated on the evaluation of the anisotropic k-${\varepsilon}$ turbulence model by the analysis of axisymmetric swirling turbulent flow. Results show that the anisotropic k-${\varepsilon}$ turbulence model has scarecely the fundamentally physical mechanism of predicting the swirling structure of flow.

  • PDF

The Structure of Axisymmeric Turbulent Diffusion Flame(II) (재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II))

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 1986
  • Turbulent mixing field with recirculating flow which is formed by injecting gaseous fuel on the main air stream is solved numerically by a finite difference method. The turbulence model for obtaining transport properties was k-.epsilon. model, which was obtained from turbulent kinetic energy and its dissipation rate. Considering the effects of streamline curvature, modified k-.epsilon model was used. Generally, Modified k-.epsilon. model makes better predictions than standard model, and from this result, it is recognized that standard model has deficiency when applied to turbulent recirculating flows, and that modified k-.epsilon. model takes into account of streamline curvature effects properly. Meanwhile, A more study will be necessary to find the reason why large differences between predicted and experimental turbulent kinetic energy exist.

Study on Measurement and Numerical Analysis for Fluid Flow past a Circular Cylinder in Rectangular Duct (사각던트 내에서 원형 실린더를 지나는 유체유동의 측정 및 수치해석에 관한 연구)

  • 김경환;윤영환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1095-1102
    • /
    • 2003
  • Flow characteristics of turbulent steady fluid flow past a cylinder in rectangular duct are measured by 5 W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between the measurement and computation. The turbulent models applied in the computations are standard K-epsilon model, RNG K-epsilon model and Chen K-epsilon model. Acurracy of standard K-epsilon model is a little bit better than acurracies of other models even though those models have almost the same order of error compared to measured data. The computations predict satisfactorily the measured velocity profiles at middle section of the circular cylinder before the fluid flow diverges. However, there are some disagreements between them at down stream from the circular cylinder.

Analysis of Turbulent Flow and Heat Transfer in a Square Duct with a 18$0^{\circ}C$ Bend (4角斷面 의 1800曲管 에서의 亂流流動 과 熱傳達解析)

  • ;B.E. Launder
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.1
    • /
    • pp.91-108
    • /
    • 1985
  • Turbulent flow and heat transfer in the 180.deg. bend with square cross section were analizied numerically by using k-.epsilon. 2 eqatiuon model with applications of QUICK scheme and PSL method. Results with PSL method show the more agreements with experimental data than those with wall function. However these results also show that it is very difficult to predict the 3-dimensional turbulent flow with strong secondary flow accuratly by standard k-.epsilon. equation model, and therefore it is necessary to introduce the higher order turbulent model or to correct the standard k-.epsilon. model for the more accurate predictions of these types of flow.

Capability of Turbulence Modeling Schemes on Estimating the Film Cooling at Parallel Wall Jet-Nozzle Configuration (평행 벽 제트-노즐 형상에서 난류모델별 막냉각 예측 능력)

  • Lee, Jun;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.10-18
    • /
    • 2009
  • Numerical simulation has been performed in this study to investigate the capabilities of turbulence modeling schemes on estimating the film cooling at a referenced parallel wall jet-nozzle configuration. Also a additional simulation has been performed for film cooling under 2-dimensional axis symmetry conditions at a parallel wall jet-nozzle configuration. It was concluded that the best turbulence model is the standard $k-{\epsilon}$ model with enhanced wall functions. Also a additional simulation showed the film cooling characteristics that are resonable physically.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

Numerical study on the two-dimensional stepped wall jet (단이 진 2차원 벽면분류에 대한 수치 해석)

  • 윤순현;엄윤섭;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.865-875
    • /
    • 1988
  • A two-dimensional stepped wall jet was numerically investigated by applying three different models : One is the standard k-.epsilon. and the other is the modified k-.epsilon. model which takes account of the streamline curvature effect by modifying the Reynolds shear stress and a source term in the dissipation equation, and a third is curvature dependent third-order correlation model. In order to test the influences of the numerical result, both the upwind scheme and the skew-upwind scheme were sued for the computations. By comparing the numerical results with available experiments, it was found that the modified k-.epsilon. model gives best overall prediction accuracy only when the numerical diffusion is eliminated by using the skew-upwind scheme. The numerical scheme was found to have more pronounced effect on the accuracy of the turbulence computation than the turbulence models.

A Study on Numerical Analysis for Heat Transfer and Flow Characteristics in a Ribbed Tube (열교환기 내 리브드 튜브의 열전달 및 유체유동에 관한 수치 해석적 연구)

  • Jeon, Jeong-Do;Jeon, Eon-Chan;Jeung, Hui-Gyun;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.134-139
    • /
    • 2011
  • This study was conducted on the characteristics of fluid flow and heat transfer in the ribbed tube used for a steam power plant. It was assumed that the air is incompressible and therefore, its density is not variable according to temperature. In addition, the gravity was ignored. A commercial code of computational fluid dynamics was used and standard k-$\epsilon$ model was used together with the energy equation included to calculate heat transfer. As Reynolds No. was low at the velocity distribution in the axial direction, the air reached hydro-dynamically fully developed region shortly but high Reynolds No. yielded late full hydro-dynamic development. The velocity distribution and non-dimensional temperature distribution were all physically reasonable and thus had a good agreement with the experimental result.