• Title/Summary/Keyword: Standard illuminant $D_{65}$

Search Result 12, Processing Time 0.028 seconds

METAMERISM IN COMPOSITE RESINS UNDER FIVE STANDARD ILLUMINANTS - D65, A, C, FCW AND TL84 (복합레진의 조건등색에 관한 연구)

  • Park, Ki-Jeong;Hwang, Yun-Chan;Kim, Sun-Ho;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.5
    • /
    • pp.402-408
    • /
    • 2003
  • This study was done to present a criterion in selection of the most proper light sources and materials by measuring metamerism index(MI) of the light curing composite resins with spectrocolorimeter. Metamerism is defined when two objects appear to be the same color in one illuminant but different in another. This is due to the fact that they have different spectral curves that fail to match under the second illuminant. In this study, A1 & A3 shade of five light curing composite resins (Esthet-X, Filteck Z250, Filteck A110. Charisma. Vitalescence) were chosen based on Vita shade. Five samples were made for shade of each product with Teflon mold (diameter: 15mm, thickness: 2mm). Metamerism index of each samples on a Barium sulfate plate($L^{*}=96.54,{\;}a^{*}=0.19,{\;}b^{*}=0.01$) prepared for sample fixation were measured with spectrocolorimeter(Miniscan XE plus. Model 4000s. Hunter Lab. USA) by applying standard light source D^{65}, C. Fcw, TL84 and A. Standardization was done with reference standard(X=80.8, Y=85.7, Z=90.8) and light trap. The results were as follows. 1. Different resins with same Vita shade showed recognizable color difference (${\delta}E^{*}>2$). 2. All composites had MI below accepted value 0.5 between standard illuminant(D$_{65}$, C, & A) and below 1.5 under fluorescent condition (Fcw & TL84). 3. MI value between $D^{65}$ and A showed higher value than MI value between other source of light(p<0.01). 4. All resins except Z250 showed MI value that A3 is higher than A1 between $D^{65}$ and A(p<0.05).except Z250 showed MI value that A3 is higher than A1 between $D^{65}$ and A(p<0.05).

Illuminant Chromaticity Estimation via Optimization of RGB Channel Standard Deviation (RGB 채널 표준 편차의 최적화를 통한 광원 색도 추정)

  • Subhashdas, Shibudas Kattakkalil;Yoo, Ji-Hoon;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.110-121
    • /
    • 2016
  • The primary aim of the color constancy algorithm is to estimate illuminant chromaticity. There are various statistical-based, learning-based and combinational-based color constancy algorithms already exist. However, the statistical-based algorithms can only perform well on images that satisfy certain assumptions, learning-based methods are complex methods that require proper preprocessing and training data, and combinational-based methods depend on either pre-determined or dynamically varying weights, which are difficult to determine and prone to error. Therefore, this paper presents a new optimization based illuminant estimation method which is free from complex preprocessing and can estimate the illuminant under different environmental conditions. A strong color cast always has an odd standard deviation value in one of the RGB channels. Based on this observation, a cost function called the degree of illuminant tinge(DIT) is proposed to determine the quality of illuminant color-calibrated images. This DIT is formulated in such a way that the image scene under standard illuminant (d65) has lower DIT value compared to the same scene under different illuminant. Here, a swarm intelligence based particle swarm optimizer(PSO) is used to find the optimum illuminant of the given image that minimizes the degree of illuminant tinge. The proposed method is evaluated using real-world datasets and the experimental results validate the effectiveness of the proposed method.

A Method for Predicting the Color Appearance Values of Textiles Depending on Illumination (광원에 따른 텍스타일의 Color Appearance 수치 예측 방법)

  • Chae, Youngjoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.44 no.1
    • /
    • pp.68-83
    • /
    • 2020
  • This study suggests a method to predict the color appearance of textiles that shifts depending on illumination variations. The suggested method allows the calculations of lightness, chroma, and hue appearance values from the spectral reflectance values of the textile and illuminant. The accuracy of the method was evaluated through numerical and statistical comparisons between the predicted and the measured color appearance values of 24 fabric samples under CIE standard illuminant D65. As a result, there were excellent agreements between the two data sets with the error values close to zero. The predicted color appearance values of 24 samples under two illuminating (color temperature-luminance) conditions, 2700 K-100 cd/㎡ and 6500 K-100 cd/㎡, were then compared to prove the significant effect of illumination on the color appearance of textiles. The color appearance values were also compared with spectrophotometrically measured physical color attributes, that is, true colors of the samples. The physical color attributes of samples were unchanged; however, differences in color appearance under different conditions were generally much larger than the suprathreshold color difference tolerances discussed in the color science literature. Finally, the magnitude of the illumination effect depending on the physical color attributes of samples was also analyzed.

Gray CCT Compensation Considered the White of Paper in Ink Jet Printer (Ink jet printer에서 paper의 white를 고려한 Gray CCT 보정)

  • 김대원;류동원;김희철;김은수;송규익
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.307-310
    • /
    • 2002
  • Color reproductions in most ink jet printer are quite different from that of standard CRT (cathode ray tube) monitor display because of the nonlinear characteristic in subtractive color reproduction. Gray scale CCT(correlated color temperature) reproductions in a typical printer are vary with the input RGB level. A simple method for making constant gray scale CCT and gamma value in photo paper is proposed in this paper. The compensation of the CCT with white point of the photo paper under the CIE standard illuminant D65 and color correction has been confirmed using the LUT(look-up table) to compensate the CCT and gamma curve characteristic.

  • PDF

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G.;Werner, John S.;Siminovitch, Michael;Papamichael, Kostantinos;Han, Jeongwon;Park, Soobeen
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.507-516
    • /
    • 2014
  • We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Perceived color shift of ceramics according to the change of illuminating light with spectroradiometer

  • Cha, Hyun-Suk;Yu, Bin;Lee, Yong-Keun
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.262-269
    • /
    • 2013
  • PURPOSE. Perceived color of ceramics changes by the spectral power distribution of ambient light. This study aimed to quantify the amount of shifts in color and color coordinates of clinically simulated seven all-ceramics due to the switch of three ambient light sources using a human vision simulating spectroradiometer. MATERIALS AND METHODS. CIE color coordinates, such as $L^*$, $a^*$ and $b^*$, of ceramic specimens were measured under three light sources, which simulate the CIE standard illuminant D65 (daylight), A (incandescent lamp), and F9 (fluorescent lamp). Shifts in color and color coordinate by the switch of lights were determined. Influence of the switched light (D65 to A, or D65 to F9), shade of veneer ceramics (A2 or A3), and brand of ceramics on the shifts was analyzed by a three-way ANOVA. RESULTS. Shifts in color and color coordinates were influenced by three factors (P<.05). Color shifts by the switch to A were in the range of 5.9 to 7.7 ${\Delta}E{^*}_{ab}$ units, and those by the switch to F9 were 7.7 to 10.2; all of which were unacceptable (${\Delta}E{^*}_{ab}$ > 5.5). When switched to A, CIE $a^*$ increased (${\Delta}a^*$: 5.6 to 7.6), however, CIE $b^*$ increased (${\Delta}b^*$: 4.9 to 7.8) when switched to F9. CONCLUSION. Clinically simulated ceramics demonstrated clinically unacceptable color shifts according to the switches in ambient lights based on spectroradiometric readings. Therefore, shade matching and compatibility evaluation should be performed considering ambient lighting conditions and should be done under most relevant lighting condition.

INFLUENCE OF THE SHADE GUIDE DESIGN ON COLOR HATCHING (Shade guide의 형태가 색상 결정에 미치는 영향)

  • Park, Geol;Kim, Dong-Jun;Lee, Shee-Eun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.3
    • /
    • pp.170-177
    • /
    • 2005
  • This study was conducted in order to assess whether the form of the shade guide affects in deciding the color of the teeth using the shade guide Eight shade light cured composite resins (Esthet-X, Dentsply, Milford, USA) were used in this study. Shade guides including the model of maxillary central incisors, teeth-form shade guide, doughnut form shade guide, and shade guide with perforated gray shield were prepared with eight shade composite resins and provided the codes randomly After arranging the models of teeth, 19 dentists working at the clinic of the Dentistry of Chonnam University Hospital and 65 students of college of dentistry, Chonnnam University selected the shade guides corresponding to the color of each tooth on the gray board under the D$_{65}$ standard illuminant. Bl shade showed highest accuracy of about 95% among all shade guides of 3 forms applied to the test and regardless of observer, tooth form shade guide showed the highest accuracy (p < 0.05) , and the doughnut form showed the lowest accuracy (p < 0.05). At the time of deciding on the color of the teeth using the shade guides as a result of above, the forms of the shade guides can affect the accuracy, and it suggests that the development of the diversified forms of shade guides, which may obtain more accurate results, is required.

Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia

  • Kim, Hee-Kyung;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.296-304
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. MATERIALS AND METHODS. Forty-five monolithic zirconia specimens ($16.3mm{\times}16.4mm{\times}2.0mm$) were fabricated and divided into 5 groups according to the number of A2-coloring liquid applications (Group I to V). Each group was divided into 3 subgroups according to the method of surface treatments (n=3): N: no treatment; P: polishing; G: glazing. Color and spectral distribution of five different areas of each specimen were measured according to CIELAB color space in the reflectance mode relative to the standard illuminant D65 on a reflection spectrophotometer. Data were analyzed using one-way ANOVA followed by Tukey's HSD test, Pearson correlation and regression analysis (${\alpha}$=.05). RESULTS. There was a significant difference in CIE $L^*$ between Subgroup N and P, and in CIE $b^*$ between Subgroup P and G in each group. Spectral reflectance generally decreased in Subgroup P and G in comparison with Subgroup N. Color differences between Subgroup P and G were within the perceptibility threshold (${\Delta}E{^*}_{ab}$ < 3.7) in most groups. Highly significant correlation was found between CIE $b^*$ and each subgroups as the number of coloring liquid applications increased ($R^2$ >0.88, P<.001). CONCLUSION. A perceptible color difference can be detected after polishing of monolithic zirconia. Polishing decreases the lightness, and glazing also decreases the lightness, but increases the yellowness of monolithic zirconia.

Computer Simulation for Gradual Yellowing of Aged Lens and Its Application for Test Devices

  • Kim, Bog G.;Han, Jeong-Won;Park, Soo-Been
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.344-349
    • /
    • 2013
  • This paper proposes a simulation algorithm to assess the gradual yellowing vision of the elderly, which refers to the predominance of yellowness in their vision due to aging of the ocular optic media. This algorithm employed the spectral transmittance property of a yellow filter to represent the color appearance perceived by elderly people with yellow vision, and modeled the changes in the color space through a spectrum change in light using the yellow filter effect. The spectral reflectivity data of 1269 Munsell matte color chips were used as reference data. Under the standard conditions of a D65 illuminant and a $10^{\circ}$ observer of 1964 CIE, the spectrum of the 1269 Munsell colors were processed through the yellow filter effect to simulate yellow vision. Various degrees of yellow vision were modeled according to the transmittance percentage of the yellow filter. The color differences before and after the yellow filter effect were calculated using the DE2000 formula, and the color pairs were selected based on the color difference function. These color pairs are distinguishable through normal vision, but the color difference diminishes as the degree of yellow vision increases. Assuming 80% of yellow vision effect, 17 color pairs out of $(1269{\times}1268)/2$ pairs were selected, and for the 90% of yellow vision effect, only 3 color pairs were selected. The result of this study can be utilized for the diagnosis system of gradual yellow vision, making various types of test charts with selected color pairs.

Color Reproduction in Television Receiver Based on Chromatic Adaptation of Human Visual System (시각계 색 순응을 고려한 텔레비전 수상기에서의 색 재현)

  • Choi, Duk-Kyu;Han, Chan-Ho;Lee, Kuhn-Il;Sohng, Kyu-Ik
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.11
    • /
    • pp.133-143
    • /
    • 1998
  • The viewers primarily watch a television under the surround light source of an incandescent or a fluorescent light. When human visual system has been adapted chromtically under the different surround light, the same chromaticities elicit quite different color appearnaces. Therefore, the corresponding color reproduction is the most suitable objective of a color television system. In this paper, an efficient corresponding color reproduction method based on the chromatic adaptation of human visual system is proposed in which colors in the display have the same appearance as the colors in the original would have had if they had been illuminated by standard illuminant ($D_{65}$). The chromaticities that appeared neutral in human visual system were determined by the Hunt's experimental results of the color adaptation in picture viewing situations and the corresponding chromaticity coordinates of stimuli in chromatic adaptation were obtained by the Bartleson's theory. Also, the corresponding color reproduction is realized by changing the phase and the gain of the demodulation axes in television receiver. Experimental results show that the proposed corresponding color displayed on the television is better than that of the conventional colorimetric color reproduction under the surround light sources.

  • PDF