DOI QR코드

DOI QR Code

A Method for Predicting the Color Appearance Values of Textiles Depending on Illumination

광원에 따른 텍스타일의 Color Appearance 수치 예측 방법

  • Chae, Youngjoo (Dept. of Clothing & Textiles, Chungbuk National University)
  • Received : 2019.10.07
  • Accepted : 2019.11.26
  • Published : 2020.02.29

Abstract

This study suggests a method to predict the color appearance of textiles that shifts depending on illumination variations. The suggested method allows the calculations of lightness, chroma, and hue appearance values from the spectral reflectance values of the textile and illuminant. The accuracy of the method was evaluated through numerical and statistical comparisons between the predicted and the measured color appearance values of 24 fabric samples under CIE standard illuminant D65. As a result, there were excellent agreements between the two data sets with the error values close to zero. The predicted color appearance values of 24 samples under two illuminating (color temperature-luminance) conditions, 2700 K-100 cd/㎡ and 6500 K-100 cd/㎡, were then compared to prove the significant effect of illumination on the color appearance of textiles. The color appearance values were also compared with spectrophotometrically measured physical color attributes, that is, true colors of the samples. The physical color attributes of samples were unchanged; however, differences in color appearance under different conditions were generally much larger than the suprathreshold color difference tolerances discussed in the color science literature. Finally, the magnitude of the illumination effect depending on the physical color attributes of samples was also analyzed.

Keywords

References

  1. American Society for Testing and Materials. (2017). ASTM E308-17, Standard Practice for Computing the Colors of Objects by Using the CIE System. West Conshohocken, PA: Author.
  2. Berns, R. S. (2000). Billmeyer and Saltzman's principles of color technology (3rd ed.). New York, NY: John Wiley & Sons, Inc.
  3. Chae, Y. (2018). Optimized structural and colorimetrical modeling of yarn-dyed woven fabrics based on the Kubelka-Munk theory. Journal of the Korean Society of Clothing and Textiles, 42(3), 503-515. doi:10.5850/JKSCT.2018.42.3.503
  4. Chae, Y. (2020). The color appearance shifts of woven fabrics induced by the optical blending of colored yarns. Textile Research Journal, 90(3-4), 395-409. doi:10.1177/0040517519869388
  5. Chae, Y., Xin, J. H., Hua, T., & Luo, M. (2017). Color appearance modeling of bicolor striped woven fabrics considering neighboring color effects. Color Research and Application, 42(4), 512-521. doi:10.1002/col.22097
  6. Choi, N.-Y., Lee, J.-S., & Yang, L.-N. (2007). The influence of luminous source affecting on the perception of textile color. The Research Journal of the Costume Culture, 15(2), 214-220. doi:10.29049/rjcc.2007.15.2.214
  7. Fairchild, M. D. (2013). Color appearance models (3rd ed.). Chichester:John Wiley & Sons, Ltd.
  8. Jeong, J. Y., & Lee, E. K. (2010). The influence of luminous source on fabric chromatic change effects. Journal of the Korean Home Economics Association, 48(5), 17-24. doi:10.6115/khea.2010.48.5.017
  9. Kandi, S. G., Tehran, M. A., & Rahmati, M. (2008). Colour dependency of textile samples on the surface texture. Coloration Technology, 124(6), 348-354. doi:10.1111/j.1478-4408.2008.00162.x
  10. Korean Agency for Technology and Standards. (2018, December 24). KS A 3011 RECOMMENDED LEVELS OF ILLUMINATION. Korean Standards & Certifications. Retrieved from https://www.standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSA3011&tmprKsNo=KSA3011&reformNo=10
  11. Luo, M. R. (2006). Colour quality evaluation. In J. H. Xin (Ed.), Total colour management in textiles (pp. 57-75). Cambridge:Woodhead Publishing Limited.
  12. Melgosa, M., Huertas, R., Yebra, A., & Perez, M. M. (2004). Are chroma tolerances dependent on hue-angle? Color Research and Application, 29(6), 420-427. doi:10.1002/col.20057
  13. Montag, E. D., & Berns, R. S. (1999). Visual determination of hue suprathreshold color-difference tolerances using CRTgenerated stimuli. Color Research and Application, 24(3), 164-176. doi:10.1002/(SICI)1520-6378(199906)24:3<164::AID-COL3>3.0.CO;2-C
  14. Qiao, Y., Berns, R. S., Reniff, L., & Montag, E. (1998). Visual determination of hue suprathreshold color-difference tolerances. Color Research and Application, 23(5), 302-313. doi:10.1002/(SICI)1520-6378(199810)23:5<302::AID-COL6>3.0.CO;2-%23
  15. Shao, S. J., Xin, J. H., Zhang, Y., & Li, M. Z. (2006). The effect of texture structure on instrumental and visual color difference evaluation. AATCC Review, 6(10), 42-48.
  16. The International Commission on Illumination. (1986). CIE 15.2:Colorimetry (2nd ed.). Vienna: Central Bureau of the CIE.
  17. Xin, J. H., & Shen, H.-L. (2003). Computational model for color mapping on texture images. Journal of Electronic Imaging, 12(4), 697-704. doi:10.1117/1.1604395
  18. Xin, J. H., Shen, H.-L., & Lam, C. C. (2005). Investigation of texture effect on visual colour difference evaluation. Color Research and Application, 30(5), 341-347. doi:10.1002/col.20138