• Title/Summary/Keyword: Standard Curing Specimen

Search Result 36, Processing Time 0.029 seconds

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

Experimental Study on Evaluation of Abrasion Resistance of Concrete Irrigation Facilities (콘크리트 수리구조물의 수중마모저항성 평가기술에 관한 실험적 연구)

  • Kim, Meyongwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • The purpose of this paper is to propose an experimental method to evaluate the resistance of abrasion about 24 MPa, 27 MPa, and 30 MPa compressive strength. These strength are used in the design and construction of concrete hydraulic structures in Korea. The mixing ratios of the ready mixed concrete strengths were investigated countrywide and set the representative mixture proportion ratios of the nine mixed types of OPC, FA and BFS. After making and curing the test specimens, the underwater abrasion test was performed. ASTM C 1138 International Standard was used to fabricate the test equipment, and the surface abrasion resistance of the specimen was tested using the test equipment. In the case of OPC, the 30% abrasion resistance improvement effect was observed at 72 hours as the water-binder ratio decreased. That was reason the coated cement bond strength of the specimen was strong. In the case of BFS and FA, it was improved by 9.9% and 3.8%, respectively, at 72 hours as the water-binder ratio decreased. It was due to the characteristics of the latent hydraulic and pozzolanic reactions. Generally, the relative abrasion resistance of concrete can be evaluated at 24 hours. However, in case of low strength (under 24 MPa), the surface mortar layer wears much faster at the first 12 hours, so it can be considered to evaluate the relative abrasion loss rate at this point.

Analysis of Mechanical Curing Properties Based on Vacuum Pressure of UV-Cured Composites (UV 경화형 복합재료의 진공압에 따른 기계적 경화 특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, a UV-cured GFRP molding is made using a combination of hand lay-up and resin transfer molding, and its properties are analyzed. The molded plates produced using various vacuum pressures (0 mmHg, -450 mmHg, and -760 mmHg) are examined via a comparison of hand lay-up molding and resin transfer molding. Tests are conducted by processing tensile specimens (ASTM D-5083), flexural test specimens (ASTM D-790), and ILSS test specimens (ASTM D-2344) according to each ASTM standard with a molded plate. Similarly, the UV-cured GFRP molding is compared against GFRP using epoxy. It was confirmed that the mechanical strengths of all the specimens increased when the vacuum pressure was increased and when UV curing was applied. This is believed to be because as the vacuum pressure increases, the pores of the cured specimen are removed, thereby reducing defects, and the bonding force between the glass fiber and the resin is stronger than that of the epoxy resin. It is expected that if resin transfer molding methods and UV-cured resins are used for molding GFRP composites in industry, products with better mechanical properties and faster curing time will be produced.

An Experiment on the Structure Application of Cold Weather Concreting Using Anti-freeze Agent and Insulating Form (내한제 및 단열거푸집을 이용한 한중콘크리트의 구조체 적용 실험)

  • 김경민;손성운;김기철;오선교;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.05a
    • /
    • pp.21-26
    • /
    • 2002
  • This paper is intended to verify the efficiency of anti-freeze agent and insulating form by analyzing the temperature history and the property of strength-increase about the concrete that is placed in the insulating form and normal form, using new type anti-freeze agent in batcher plant According to the results about the temperature history, while the lowest temperature shows 3$^{\circ}C$ in case of normal concrete + euroform, 4$^{\circ}C$ in case of normal concrete + insulating form, it shows 6$^{\circ}C$ in anti-freeze agent + the insulating form, so the effect is most favorable. The compressive strength with mixing anti-freeze agent or not, shows high in order of standard curing, structure-managing and open air-placed specimen and the concrete mixing anti-freeze agent shows the highest compressive strength-increase.

  • PDF

A Study on Durability of Concrete According to Mix Condition by Marine Environment Exposure Experiment (해양환경폭로실험을 통한 배합조건별 콘크리트의 내구성에 관한 연구)

  • Jo, Young-Jin;Choi, Byung-Wook;Choi, Jae-Seok;Jung, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4542-4551
    • /
    • 2013
  • Recently, much attention has focused on the study of eco-friendly concrete using recycled by-products for protecting marine ecosystem and durability of concrete exposed to marine condition. This study evaluated the durabilities of 4 different type of concrete mixtures(Control, Marine, Porous, New slag) with the seawater resistance by marine environment exposure experiment and freeze-thaw resistance, resistance to chloride ion penetration considering severe deterioration environment. In this study, we conducted seawater resistance using compressive strength according to the age(7/28/56 days) of specimen and curing conditions(standard(fresh water), tidal, immersion, artificial seawater). The results show that compressive strength of concrete exposed to marine environment exposure condition was lower than those of the standard curing condition. Also, compressive strength of New slag using eco-friendly materials for protecting marine ecosystem was lower than those of other concretes, there is need to improve the performance of New slag. The results for freeze-thaw resistance showed that all mixtures have excellent, but the Porous and New slag were lower than others. Also, the more improved resistance to chloride ion penetration than those of the Marine was measured in the New slag regardless of curing condition.

A study of mixing ratio of seal material for umbrella arch reinforcement for tunnelling (터널 강관 보강형 다단 그라우팅의 Seal재 배합비에 대한 연구)

  • Hwang, Beoung-Hyeon;Kim, Yeon-Deok;Sim, Jae-Hoon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.367-381
    • /
    • 2020
  • This paper presents the seal material mixing ratio of tunnel umbrella arch reinforcement method. Currently, there is no clear standard for the proper gelation time and curing time of the Seal material in Korea, and the quality control is also difficult because it cannot be verified. In response, the ratio of the mixture of the seal material was composed of four types of indoor experiments, and the amount of gelation time and bleed was checked. In addition, a non-cart penetration test confirmed the curing time and compared the ratio of each combination. Further experiments on W/C 120% identified the effect of mixing speed and time on the seal material. A total of three field experiments were conducted based on indoor experiments, and the size and strength of bulb formation were compared by checking the curing time of the specimen and main injection. Comparisons show that the lower W/C, the stronger the strength, the larger the size of the bulb, and the faster the hardening time appears. Based on the results of the gelation time and curing time, it was deemed that the mixing ratio of W/C 120% is most appropriate when applied to the actual site.

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • Hwang, Yin-Seong;Lim, Choon-Goun;Kim, Seong-Soo;Han, Cheon -Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.23-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by I hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

An Experimental Application of Concrete Using TEA in Construction Field (트리에탄올아민을 사용한 콘크리트의 현장 적용 실험)

  • 황인성;임춘근;김성수;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.23.1-26
    • /
    • 2003
  • This study is intended to investigate the properties of early strength development by application of TEA to the field. According to the results, when TEA is added, fluidity is almost same to base concrete, and increases upto aimed slump after field flowing. Setting time does not differ in the case of base and TEA, but is retarded after flowing. The time when compressive strength gains 5 MPa, which side form can be removed, is 23 hours, and so the removal time is shortened by 1hours in comparison with plain concrete. But compressive strength is almost same to that of plain concrete at 28 days. The rebound value of P type schmidt hammer show similar tendency to compressive strength, and the rebound value of structure is higher than that of standard curing specimen due to heat capacity effect and drying by the air outside. Therefore, it is thought that if the rebound value of P type schmidt hammer is controled. by about 26 in consideration of open air environment, it is very effective to determine the removal time of side forms.

  • PDF

Potential use of mine tailings and fly ash in concrete

  • Sunil, B.M.;Manjunatha, L.S.;Ravi, Lolitha;Yaragal, Subhash C.
    • Advances in concrete construction
    • /
    • v.3 no.1
    • /
    • pp.55-69
    • /
    • 2015
  • Tailing Material (TM) and Fly Ash (FA) are obtained as waste products from the mining and thermal industries. Studies were carried out to explore the possibility of utilizing TM as a part replacement to fine aggregate and FA as a part replacement to cement, in concrete mixes. The effect of replacing fine aggregate by TM and cement by FA on the standard sized specimen for compressive strength, split tensile strength, and flexural strengths are evaluated in this study. The concrete mix of M40 grade was adopted with water cement ratio equal to 0.40. Concrete mix with 35% TM and 65% natural sand (TM35/S65) has shown superior performance in strength as against (TM0/S100, TM30/S70, TM40/S60, TM50/S50, and TM60/S40). For this composition, studies were performed to propose the optimal replacement of Ordinary Portland Cement (OPC) by FA (Replacement levels studied were 20%, 30%, 40% and 50%). Replacement level of 20% OPC by FA, has shown about 0-5% more compressive strength as against the control mix, for both 28 day and 56 days of water curing. Interestingly results of split tensile and flexural strengths for 20% OPC replaced by FA, have shown strengths equal to that of no replacement (control mix).

A STUDY ON THE COLOR STABILITY OF RESIN MODIFIED GLASS IONOMERS (레진 강화형 글라스아이오노머의 색 안정성에 관한 연구)

  • Koo, Dae-Hoi;Lee, Yong-Keun;Son, Ho-Hyun;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.358-373
    • /
    • 1997
  • Resin modified glass ionomers were introduced in 1988 to overcome the problems of moisture sensitivity and low early mechanical strength of conventional glass ionomers and to maintain their clinical advantages. The purpose of this study was to evaluate the color stability of four resin modified glass ionomers(Fuji II LC, Vitremer, Dyract and VariGlass), one resin composite material(Z-100), and one conventional glass ionomer(GC Fuji II) under several conditions. These conditions were as follows: 1) before curing, 2) after curing, 3) after polishing, 4) after 500 thermocycling, 5) after 1,000 thermocycling, 6) after 1,500 thermocycling and 7) after 2,000 thermocycling. Three specimens of each material/shade combination were made. Materials were condensed into metal mold with a diameter of 10 mm and a thickness of 2.0 mm, and were pressed between glass plates. The material was polymerized using a light polymerizing unit(Visilux II, 3M, USA). After removal of excess, the surface was polished sequentially on wet sandpapers. A reflection spectrophotometer(Model TC-6FX, Tokyo Denshoku Co., Japan) was used to determine CIELAB coordinates($L^*,a^*$ and $b^*$) of each specimen. CIE standard illumination C was used as the light source. The results were as follows : 1. In comparing different shades of same material, CIELAB color difference(${\Delta}E^*$) value was not significantly different from each other(p>0.05). 2. CIELAB color difference(${\Delta}E^*$) values between after-curing and after-polishing were ranged from 5.53 to 27.08. These values were higher than those of other condition combinations. 3. CIELAB color difference(${\Delta}E^*$) values between before-thermocycling and after-thermocycling were ranged from 1.40 to 7.81. Despite the number of thermocycling increased, CIELAB color difference(${\Delta}E^*$) value was low. 4. The color stability of resin modified glass ionomers was more stable than that of conventional glass ionomers but less stable than that of Z100.

  • PDF