• Title/Summary/Keyword: Stand-Alone Mode

Search Result 75, Processing Time 0.026 seconds

Dual Bias Modulator for Envelope Tracking and Average Power Tracking Modes for CMOS Power Amplifier

  • Ham, Junghyun;Jung, Haeryun;Bae, Jongsuk;Lim, Wonseob;Hwang, Keum Cheol;Lee, Kang-Yoon;Park, Cheon-Seok;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.802-809
    • /
    • 2014
  • This paper presents a dual-mode bias modulator (BM) for complementary metal oxide semiconductor (CMOS) power amplifiers (PAs). The BM includes a hybrid buck converter and a normal buck converter for an envelope tracking (ET) mode for high output power and for an average power tracking (APT) mode for low output power, respectively. The dual-mode BM and CMOS PA are designed using a $0.18-{\mu}m$ CMOS process for the 1.75 GHz band. For the 16-QAM LTE signal with a peak-to-average power ratio of 7.3 dB and a bandwidth of 5 MHz, the PA with the ET mode exhibited a poweradded efficiency (PAE) of 39.2%, an EVM of 4.8%, a gain of 19.0 dB, and an adjacent channel leakage power ratio of -30 dBc at an average output power of 22 dBm, while the stand-alone PA has a PAE of 8% lower at the same condition. The PA with APT mode has a PAE of 21.3%, which is an improvement of 13.4% from that of the stand-alone PA at an output power of 13 dBm.

The study for developing Wind and Photovoltaic power hybrid generation system and monitoring (풍력.태양광 복합 발전 시스템 개발 및 모니터링에 관한 연구)

  • Park, Kunhyun;Kang, Chulung;Lim, Jonghwan;Park, Euijang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.1-183.1
    • /
    • 2010
  • Recently, the increased interest in environmental issues has led to extensive research for development of green energy generation systems. However, only one type of generation system may not be sufficient for stand-alone mode because it cannot cope with the irregularity of weather condition. A hybrid generation system is able to make up for the weakness of each system. In this paper, a stand-alone hybrid wind/PV system is developed that can guarantee the stable energy supply. The system is suitable for power supply under 50W, and a vertical savonius type of blade was designed and applied for the wind generation system.

  • PDF

Design of a control scheme for applying DC power sources to a distribution system (배전시스템에 DC 전력원을 적용하기 위한 제어 기법 설계)

  • Hwang, Chul-Sang;Kim, Gyeong-Hun;Byeon, Gilsung;Jeon, Jin-Hong;Jo, Chang-Hee;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1056-1057
    • /
    • 2015
  • A common DC bus is a useful connection for several DC output sources such as photovoltaic (PV), fuel cells, and batteries. Operation of the common DC power system with more than two DC output sources, especially in a stand-alone mode, requires a control scheme for the stable operation of the system. In this paper, a control scheme has been developed for applying DC power sources to the distribution system. The purpose of the control scheme is to make the best use of the DC power sources. The DC power system consists of PV, two energy storage systems and a DC-AC inverter with the control scheme. A distribution system was modeled in PSCAD/EMTDC. As the results, the control scheme is applied to the DC-AC inverter and the DC-DC converter for transfer operations between the grid-connected and the stand-alone mode to keep the DC bus and the AC voltage constant. The results from the simulation demonstrate the stable operation of a grid connected DC power system.

  • PDF

Seamless Mode Transfer of Indirect Current Controlled Parallel Grid-Connected Inverters (간접전류제어방식 병렬형 계통연계 인버터의 무순단 모드절환)

  • Song, Injong;Choi, Junsoo;Lim, Kyungbae;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.334-341
    • /
    • 2019
  • This study proposes the control strategy for the seamless mode transfer of indirect current controlled parallel grid-connected inverters. Under the abnormal grid condition, the grid-connected inverter can convert the operation mode from grid-connected to stand-alone mode to supply power to the local load. For a seamless mode transfer, the time delay problems caused by the accumulated control variable error must be solved, and the indirect current control method has been applied as one of the solutions. In this study, the design of control parameters for the proportional-resonant-based triple-loop indirect current controller and the control strategy for the seamless mode transfer of parallel grid-connected inverters are described and analyzed. The validity of the proposed mode transfer method is verified by the PSiM simulation results.

A Voltage Regulation System for Independent Load Operation of Stand Alone Self-Excited Induction Generators

  • Kesler, Selami;Doser, Tayyip L.
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1869-1883
    • /
    • 2016
  • In recent years, some converter structures and analyzing methods for the voltage regulation of stand-alone self-excited induction generators (SEIGs) have been introduced. However, all of them are concerned with the three-phase voltage control of three-phase SEIGs or the single-phase voltage control of single-phase SEIGs for the operation of these machines under balanced load conditions. In this paper, each phase voltage is controlled separately through separated converters, which consist of a full-bridge diode rectifier and one-IGBT. For this purpose, the principle of the electronic load controllers supported by fuzzy logic is employed in the two-different proposed converter structures. While changing single phase consumer loads that are independent from each other, the output voltages of the generator are controlled independently by three-number of separated electronic load controllers (SELCs) in two different mode operations. The aim is to obtain a rated power from the SEIG via the switching of the dump loads to be the complement of consumer load variations. The transient and steady state behaviors of the whole system are investigated by simulation studies from the point of getting the design parameters, and experiments are carried out for validation of the results. The results illustrate that the proposed SELC system is capable of coping with independent consumer load variations to keep output voltage at a desired value for each phase. It is also available for unbalanced consumer load conditions. In addition, it is concluded that the proposed converter without a filter capacitor has less harmonics on the currents.

Integrated Simulation Model for Designing Distributed Energy Management System in Microgrid System (마이크로그리드시스템의 분산 에너지관리시스템 설계를 위한 통합시뮬레이션 모델 개발)

  • Cho, Jae-Hoon;Park, Sun-Hong;Lee, Dae-Jong;Cho, Young-Im;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • In this paper, an integrated simulation model for designing multi-agent system based DEMS (distributed energy management system) in stand-alone micro-grid system is proposed. In the design of the EMS(energy management system), the multi-agent based DEMS are more effective than conventional centralized EMS, but it is difficult to design the DEMS by general design tools for power system because of various states of a microgrid system during operation of stand-alone mode. Also, since performance test of the DEMS using a real system is inefficient, an integrated simulation model is required for designing an effective multi-agent system based DEMS. The proposed model consists of Matlab/SimPowerSystems based simulation model of the microgrid system and the Multi-agnet based DEMS designed by Matlab/StateFlow tool. In order to show the effect of the proposed model, the model outputs are analyzed for specified operation conditions.

Half-Mode Substrate Integrated Waveguide Amplifier Using Lumped-Element Transition

  • Eom, Dong-Sik;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.29-33
    • /
    • 2017
  • This paper proposes a half-mode substrate integrated waveguide (HMSIW) amplifier using lumped-element transition. The input and output impedances of this amplifier are matched by the lumped-element transition structure. This structure provides compact impedance and mode matching circuits between the HMSIW and a stand-alone amplifier. Surface mount technology inductors and capacitors are implemented to realize the lumped-element transition. A prototype of the proposed HMSIW amplifier shows 15 dB gain with 3 dB bandwidth of 4 to 7.05 GHz in a simulation and measurement.

Smart Power Management System for Leisure-ship

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.9
    • /
    • pp.749-753
    • /
    • 2011
  • A leisure ship has a stand-alone type power system, and a generator is in use on this condition. But the generator cannot be operated in condition of leisure activity, ocean measurement and etc, because of environment and noise. Recently, renewable energy system is connected with power system of the leisure-ship for saving energy. The renewable energy system can not supply the stable power to leisure-ship because power generation changes according to weather condition. And most of the leisure ship is operated without methodical power management system. This study's purpose is to develop SPMS(Smart Power Management System) algorithm using the renewable energy (photovoltaic, wind power and etc.). The proposed algorithm is able to supply stable the power according to operation mode. Furthermore, the SPMS manages electric load (sailing and communication equipment, TV, fan, etc.) and reduces operating times of the generator. In this paper, the proposed algorithm is realized and executed by using LabVIEW. As a result, the hour for operating the generator is minimized.

Maximum Output Power Control for Stand-Alone Wind Power Generation System Using Cage-Type Induction Generators (농형 유도발전기를 이용한 독립형 풍력발전시스템의 최대출력제어)

  • 김형균;이동춘;석줄기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 2004
  • In this paper, a maximum output power control of stand-alone cage-type induction generator systems for wind power generation is proposed. The induction generator is operated in a vector-controlled mode, which is excited with d-axis current and of which torque is controlled with q-axis current. The generator speed is controlled by this torque, along which speed the generator produces the maximum output power. The generated power charges the battery bank for energy storage through an ac/dc PWM converter. The proposed scheme has been verified for the wind turbine simulator system which consists of M-G set.