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I. INTRODUCTION 

A substrate integrated waveguide (SIW) is a well-known type 

of planar formed waveguide on a printed circuit board (PCB). 

An SIW is formed with two parallel metallic via holes or 

grooves in the PCB. Compared with traditional, bulky wave-

guide, an SIW provides easy-to-fabricate structures, small-sized 

circuits, and good integration with planar circuits. Studies have 

already developed various passive and active SIW circuits and 

devices [1–10]. Of these active SIW amplifiers [1–4] are com-

plicated to design because the signal and ground of the SIW are 

electrically shorted by metalized via holes or grooves, and they 

need input and output impedance matching as well as mode 

conversion circuits between the amplifier and the SIW. A mode 

conversion circuit, also called the transition structure between 

the SIW and the planar transmission lines—microstrip (MS), 

coplanar waveguide (CPW) or conductor-backed coplanar wa-

veguide (CBCPW)—is needed because the SIW and planar 

transmission lines have different mode characteristic. 

An X-band SIW amplifier using a DC-decoupled transition 

structure between the SIW and the MS was firstly proposed [1]. 

However, the DC-decoupled transition structure has to be de-

signed very carefully, because the mode and impedance match-

ing properties are very sensitive to the coupling factor of the 

DC-decoupled transition. SIW power amplifiers using CB-

CPW-to-SIW and MS-to-SIW transitions were proposed to 

realize an input/output matching network in the SIW [2, 3]. 

However, it is hard to tune the matching network after PCB 

fabrication, and the transition length between the SIW and the 

CBCPW or MS remains long. Note that the long transition 

structure may cause unwanted coupling and radiation around 

the circuits [7]. A corrugated SIW distributed amplifier was also 

reported; however, its performance was not optimized [4].  

This study proposes a half-mode SIW (HMSIW) amplifier 

using HMSIW-to-MS lumped-element transition. The pro-

posed structure was developed using an HMSIW platform that 
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reduces the SIW structure size by half, and it supports the 

TE0.5,0 half-mode [8]. The lumped-element transition structure 

was realized using a surface mount technology (SMT) inductor 

and capacitor to reduce the length of the conventional transition 

structure [9, 10]. The proposed structure is easy to design and 

enables tuning of the amplifier input/output matching network 

by using lumped-element transition after PCB fabrication. 

II. HMSIW TRANSITION TO MICROSTRIP AND  

HMSIW AMPLIFIER DESIGN 

Fig. 1(a) and (b) show the conventional and incomplete tran-

sition structures, MS-HMSIW-MS [5] and MS-HMSIW, 

respectively, on the Taconic TLX substrate (dielectric constant 

= 2.55, height = 0.508 mm). These transition structures were 

verified by simulation using ANSYS HFSS ver. 14. Note that 

ports 1 and 2 in Fig. 1(a) and (b) were excited as a 50-Ω lumped 

port, and not a wave port in the HFSS simulation. 

Fig. 2 shows simulation results of the MS-HMSIW-MS and 

MS-HMSIW structures. In Fig. 2(a), the simulated return loss-

es of the MS-HMSIW-MS are under -15 dB from 4.13 to 6.8 

GHz, and in Fig. 2(b), the MS-HMSIW-MS structure shows 

good matching at 50 Ω from the Smith chart. Note that the 

simulated HMSIW length is λc/4 ≈ 30 mm. Fig. 2(c) shows the 

simulated return losses of the incomplete MS-HMSIW transi-

tion. However, the incomplete transition structure shows return 

losses of around -8 dB at ports 1 and 2 because the port-2 im-

pedance is not located on 50 ohm. The port-2 impedance is 

located at 24.86 + j12.63 Ω at 6 GHz, as seen in the Smith 

chart in Fig. 2(d). To match the port-2 impedance to 50 Ω, a 

lumped-element matching circuit is used. 

Murata SMT 0.2 nH series inductor with 0603 mm2 size and 

a 0.4-pF shunt capacitor were used between the HMSIW and  
 

 
Fig. 1. (a) Conventional MS-HMSIW-MS transition structure. (b) 

Incomplete MS-HMSIW transition structure.  

 
Fig. 2. (a) Simulated return loss of conventional MS-HMSIW-MS 

transition. (b) Smith chart of simulated reflection coefficient of 

conventional transition. (c) Simulated return loss of incomplete 

MS-HMSIW transition. (d) Smith chart of simulated reflec-

tion coefficient of incomplete transition.  

 

the MS, as shown in Fig. 3(a). Note that the shunt capacitor is 

bridged with the MS-edge and the extended top-grounded 

metal pad. The 0.2 nH series inductor moved the 24.86 + 

j12.63 Ω impedance to 25.1 + j24.77 Ω at 6 GHz, and the 0.4 

pF shunt capacitor changed the 25.1 + j24.77 Ω impedance to 

50 Ω, as shown in Fig. 3(b). As a result, the return losses im-

proved after evaluating the proposed lumped-element transition,  
 

  
Fig. 3. (a) Lumped-element matching circuit between HMSIW and 

MS. (b) Simulated port-2 reflection coefficient after lumped-

element matching. (c) Simulated return losses after lumped-

element matching. 
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as shown in Fig. 3(c). Note that the 50 Ω lumped-port was in-

duced to ports 1 and 2 in the HFSS simulation, as shown in Fig. 

3(a). 

The back-to-back transitions of conventional [5] and lu-  

mped-element transition [9] structures were designed and com-

pared to verify the performance, as shown in Fig. 4(a) and (b). 

The lumped-element transition has a short transition length 

compared with the conventional transition, as shown in Fig. 

4(a). The 0.2 nH series SMT inductor and 0.4 pH shunt capa-

citor were attached on the matching section. SMA connectors 

were soldered to the edge of the MS line for the measurement. 

The measurements were conducted using the Agilent N5230A 

vector network analyzer. Fig. 4(b) shows the measured S-

parameters of the conventional and lumped-element transition 

structures. The measured insertion loss of the lumped-element 

structure remains within 0.7 dB from 4.15 to 6.88 GHz. The 

measured return loss is below -15 dB from 4.2 to 6.7 GHz. The 

return loss bandwidth of the lumped-element transition struc-

ture is narrower than that of the conventional structure because 

lumped-element matching provides a narrower bandwidth than 

distributed matching of the tapered line [11]. However, the 

lumped-element transition structure provides a physically short 

transition length and shows insertion loss similar to that of the  

 

 

 
Fig. 4. (a) Back-to-back transition structure of conventional and lum-

ped-element designs. (b) Measured S-parameters of conven-

tional and the proposed designs. 

 
Fig. 5. Building blocks of proposed HMSIW amplifier. 

 

conventional structure in the pass-band. 

Fig. 5 shows the proposed HMSIW amplifier design and its 

building blocks. The amplifier is bridged with the HMSIW 

through the SMT matching section, which plays a role in the 

HMSIW-to-MS transition and input/output matching net-

works of the amplifier. Mini-circuit GALI-33+ amplifier was 

implemented to demonstrate the proposed HMSIW amplifier, 

and the input and output of the amplifier have 50 pF DC-block 

capacitors. The input and output impedances of the GALI-

33+ amplifier are 50 Ω. Note that if the input/output of the 

amplifier are not 50 Ω, the input/output impedances of the am-

plifier should be matched with the HMSIW by changing the 

values of the lumped-elements. 

III. EXPERIMENTAL RESULTS 

Fig. 6 shows the proposed HMSIW amplifier. This amplifier 

is biased at 4.3 V with dc current of 45 mA. The proposed am- 

 

 
Fig. 6. Proposed HMSIW amplifier. 

 

 
Fig. 7. Measured S-parameters of proposed HMSIW amplifier and 

stand-alone amplifier. 
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plifier was simulated and measured. Fig. 7 shows the simulated 

and measured small-signal gain and return loss of the pro-

posedstructure compared with that of the measured stand-alone 

amplifier. The proposed amplifier has 15 dB gain with 3 dB 

bandwidth from 4 to 7.05 GHz. The measured return loss is as 

low as 10 dB from 4.04 to 6.99 GHz. The measured results 

show good agreement with the simulation results. 

IV. CONCLUSION 

This study proposes an HMSIW amplifier with a lumped-

element transition circuit. The lumped-element transition struc-

ture has short transition length, and it may reduce the possible 

radiation to nearby devices compared with the conventional 

transition structure. The proposed HMSIW amplifier was de-

signed, simulated, and measured. The results indicate that it is 

promising for small-sized SIW circuit integration. 
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