• 제목/요약/키워드: Stamp forming process

검색결과 28건 처리시간 0.019초

박판성형기술의 개발과 적용 (The Development and Application of Sheet Metal Forming Technology)

  • 박춘달;이장희;양동열;허훈;정동원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.147-162
    • /
    • 1994
  • Generally, the forming process of sheet metal is very complex and difficult process because of many variables such as tool geometry, material properties and lubrication. In this view point, the numerical analysis of sheet metal forming process is very difficult. High speed computer is used to model complex sheet metal forming process on a reasonable time scale. The design and development of sheet metal parts in the automotive industry and the need for improved sheet forming process and reduced part development cost have led to the use of computer simulation in tool/die design of sheet metal pressing. HMC(Hyundai Mator Company) has invested to develop programs for analysis of sheet metal forming process with connection of Universities. As a result, several programs were developed. Recently, the commercial software, PAM-STAMP of ESI was installed and is being tried to application of it to the real automotive panels. This article reviews the ongoing activities on development and application of analytical modeling of sheet metal forming at HMC.

오메가형 벨로즈관의 성형을 위한 유한요소해석 (Finite Element Analysis for Forming Processes of $\Omega$-type Bellows Tube)

  • 이정훈;김낙수;전병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.165-170
    • /
    • 1997
  • The study presents an computer-aided analysis and its design for the forming process of $\Omega$-type bellows tube. Finite element analysis was carried out to perform the process simulation. Based on the analytic results of various conditions, the forming conditions used for angled U-type bellows tube were settled. The 3D modeling was constructed by I-DEAS and PAM-STAMP was used for process simulation. It is concluded that the spring back of formed bellows influences $\Omega$-shape and these results can be used for the process design.

  • PDF

자동차패널 성형공정의 3차원 유한요소해석에 관한 연구 (A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel)

  • 이종문;김종원;안병직;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 자동차부품 제작기술의 진보
    • /
    • pp.75-86
    • /
    • 1996
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blanks own weight, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw die in the die try-out, though effects of mesh size and drawbead resistance force on the numerical accuracy are much sensitive. For the intensive application to draw-die design and try-out, the experimental know-hows about the forming variables such as friction coefficient, punch velocity, drawbead force, etc are necessary.

프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구 (Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification)

  • 김지태;김병민;강충길
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

자동차 패널 성형 공정의 3차원 유한요소 해석에 관한 연구 (A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel)

  • 이종문;김종원;안병직;금영탁
    • 소성∙가공
    • /
    • 제6권2호
    • /
    • pp.152-160
    • /
    • 1997
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blank own weigth, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw dies in the die try-out, though effects of mesh size and drawbead resistance force on the try-out, the experimental knowhows about the forming variables such as friction coefficient punch velocity, drawbead force, etc are necessary.

  • PDF

예비굽힘 및 예비성형공정의 효과를 고려한 자동차 서브 프레임의 관재액압성형 (Tube Hydroforming Process of Automotive Subframe considering Preforming and Prebending Effect)

  • 김헌영;임희택;서창희;이우식
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.402-408
    • /
    • 2003
  • Currently tube hydroforming has many studies and applications in manufacturing industry, especially in automotive industry. But tube hydroforming was applied to the automotive component with simple shape. So the manufacturer and the researcher proposed additional processes to form the automotive component with complex shape. It is prebending and preforming. Prebending is to crush bend or rotary draw bend a tubular blank into a shape that facilitates placement into the next forming tool. Preforming is where the prebent tube is crushed into a shape that facilitates placement into the final forming tool. This paper analyzed and compared to the tube hydroforming process to using of general and preformed bending tube, also explained the importance of tube bending and preforming process. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the tube hydroforming operations.

  • PDF

박판금속 성형공정 해석시스템 개발 (Development of Analysis System for Sheet Metal Forming)

  • 정완진;조진우
    • 소성∙가공
    • /
    • 제8권1호
    • /
    • pp.29-37
    • /
    • 1999
  • An analysis system for sheet metal forming(SAT_STAMP) has been developed to improve the design and tryout process by predicting the deformation behavior more precisely. This analysis system consists of forming analysis, springback analysis and post processor modules. The more accurate prediction of stress history can be achieved due to the improved contact algorithm. Continuous simulation of sequential processes can be carried out conveniently without interruption by the improved data management of the developed system. The error of data transfer between forming analysis and springback analysis is minimized using the proper shell element. Several benchmark test results and practical results are presented to show the effectiveness and reliability of this program.

  • PDF

고분자 필름 및 구리선 이종 물성을 고려한 EV모터용 헤어핀 성형 공정 해석 (Forming Simulation of EV Motor Hairpin by Implementing Mechanical Properties of Polymer Coated Copper Wire)

  • 김동춘;임윤재;백민광;이명규;오인석
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.122-128
    • /
    • 2023
  • As electric vehicles (EV) have increasingly replaced the conventional vehicles with internal combustion engines (ICE), most of automotive makers are actively devoting to the technology development of EV parts. Accordingly, the manufacturing process for power source has been also shifting from engine/transmission to EV motor/reducer system. However, lack of experience in developing the EV motor still remains as a technical challenge. In this paper, we employed the forming simulation based on finite element modeling to solve this problem. In particular, in order to increase the accuracy of the forming simulation, we introduced the elastic-plastic constitutive model parameters for polymer-copper hybrid wire by investigating the individual strain-stress curves, and elastic modulus of polymer and copper. Then, the reliability of modeling procedure was confirmed by comparing the simulated results with experiments. Finally, the identified mechanical properties and finite element modeling were applied to a hairpin forming process, which involves multiple deformation paths such as bending, pressing, widening, and twisting. The proposed numerical approach can replace common experience or experiment based trials by reducing production time and cost in the future.

나노스템프 구동용 중공형 압전액추에이터 기본특성에 관한 연구 (Study on Basic Characteristics of Hollow Piezoelectric Actuator for Driving Nanoscale Stamp)

  • 박중호;이후승;이재종;윤소남;함영복;장성철
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1015-1020
    • /
    • 2011
  • 최근, MEMS/NEMS 기술을 이용하여 기능성 나노 구조물을 제작하기 위한 공정기술 중에, 마스터 스템프에 형성된 나노패턴을 웨이퍼 등에 복제할 수 있는 나노임프린트 리소그래피 기술이 활발히 연구되고 있다. 본 연구에서는 기존 멀티헤드방식 나노임프린팅 장비에서 사용되던 전동모터를 대신하여 플렉셔 메커니즘과 결합된 나노스템프를 구동하기 위한 사각 형상의 중공형 압전액추에이터를 설계, 제작하였으며, 제조공정이 다른 각각의 시제품의 변위, 발생력 및 응답특성에 관한 검토를 수행한다. 또한, 압전 액추에이터의 변위제어에 대한 제어수법을 간단히 소개하였으며, 제작한 프로토타입의 PI제어기에 의한 변위 제어결과를 소개한다.

자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석 (Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF