DOI QR코드

DOI QR Code

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification

프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구

  • 김지태 (현대하이스코 기술연구소 경량화연구팀) ;
  • 김병민 (부산대학교 일반대학원 기계공학부 정밀가공시스템전공) ;
  • 강충길 (정밀정형및금형가공연구소)
  • Received : 2011.12.09
  • Accepted : 2012.04.04
  • Published : 2012.06.01

Abstract

Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

Keywords

References

  1. G. H. Bae, H. Huh, J. H. Song, S.H. Kim, 2006, Light-weight Design with a Simplified Center-pillar Model for Improved Crashworthiness, Trans. Kor. Soc. Auto. Eng., Vol. 14, No. 6, pp. 112-119.
  2. H. S. Choi, W. S. Lim, C. G. Kang, B. M. Kim, 2011, A Local Softening Method for Reducing Die Load and Increasing Service Life in Trimming of Hot Stamped Part, Trans. Mater. Process., Vol. 20 ,No. 6, pp. 427-431. https://doi.org/10.5228/KSTP.2011.20.6.427
  3. J. S. Lee, M. S. Chae, C. D. Park, Y. S. Kim, 2009, Mechanical and Forming Characteristics of High-Strength Boron-Alloyed Steel with Hot Forming, Trans. Mater. Process., Vol. 18, No. 3, pp. 236-244 https://doi.org/10.5228/KSPP.2009.18.3.236
  4. M. Merklein, L. Lechler, M. Geiger, 2006. Characterization of the Flow Properties of the Quenchenable Ultra High Strength Steel 22MnB5, CIRP Ann., Vol. 55, No. 1, pp. 229-233. https://doi.org/10.1016/S0007-8506(07)60404-1
  5. H. G. Kim, H. S. Son, S. H. Park, 2006, Development of Thermal-mechanical Coupled Simulation Skills for Hot Press Forming Tool Design, Posco Tech. Rep., Vol. 9, No. 1, pp. 117-125.
  6. K. Y. Kwon, B. S. Sin, C. G. Kang, 2010, The Effect of Forming Parameter on Mechanical Properties in Hot Bending Process of Boron Steel Sheet, Trans. Mater. Process., Vol. 19, No. 4, pp. 203-209. https://doi.org/10.5228/KSPP.2010.19.4.203
  7. Y. S. Suh, M. W. Ji, K. H. Lee․Y. S. Kim, 2010, Application and Verification of Virtual Manufacturing to Hot Press Forming Process with Boron Steel, Trans. Kor. Soc. Auto. Eng., Vol. 18, No. 2, pp. 61-66.
  8. R. Kolleck, R. Veit, M. Merklein, J. Lechler, M. Geiger, 2009, Investigation on Induction Heating for Hot Stamping of Boron Alloyed Steels, CIRP J. Manuf. Sci. Technol., Vol. 58, No. 1, pp. 275-278. https://doi.org/10.1016/j.cirp.2009.03.090
  9. N. H. Kim, C. G. Kang, 2010, The Prediction of Interfacial Heat Transfer Coefficient According to Contact Time and Pressure in Forging and Casting Die Materials for the Hot Press Forming, Trans. Mater. Process., Vol. 19, No. 6, pp.378-386. https://doi.org/10.5228/KSTP.2010.19.6.378
  10. S. H. Park, J. W. Yoon, D. Y. Yang, Y. H. Kim, 1999, Optimum Blank Design in Sheet Metal Forming by Deformation Path Iteration Method, Int. J. Mech. Sci., Vol. 41, No. 10, pp. 1217-1232. https://doi.org/10.1016/S0020-7403(98)00084-8
  11. T. W. Ku, H. J. Lim, H. H. Choi, S. M. Hwang, B. S. Kang, 2001, Implementation of Backward Tracing Scheme of The FEM to Blank Design in Sheet Metal Forming, J. Mater. Process. Technol., Vol. 111, No. 1-3, pp. 90-97. https://doi.org/10.1016/S0924-0136(01)00518-0
  12. K. Chung , J. W. Yoon, O. Richmond, 2000, Ideal Sheet Forming with Frictional Constraints, Int. J. Plast., Vol. 16, No. 6, pp. 595-610. https://doi.org/10.1016/S0749-6419(99)00068-6
  13. H. Naceur, Y. Q. Guo, J. L.Batoz, 2004, Blank Optimization in Sheet Metal Forming Using an Evolutionary Algorithm, J. Mater. Process. Technol., Vol. 151, No. 1-3, pp. 183-191. https://doi.org/10.1016/j.jmatprotec.2004.04.036
  14. X. Chen, R. Sowerby, 1996, Blank Development and The Prediction of Earing in Cup Drawing, Int. J. Mech. Sci., Vol. 38, No 5, pp. 509-516. https://doi.org/10.1016/0020-7403(95)00068-2
  15. R. Sowerby, J. L. Duncan, E. Chu, 1986, The Modeling of Sheet Metal Stampings, Int. J. Mech. Sci., Vol. 28, No. 5, pp. 415-430. https://doi.org/10.1016/0020-7403(86)90062-7
  16. H. Shim, K. Son, K Kim, 2000, Optimum Blank Shape Design by Sensitivity Analysis, J. Mater. Process. Technol., Vol. 104, No. 3, pp. 191-199. https://doi.org/10.1016/S0924-0136(00)00556-2
  17. K. Son, H. Shim, 2003, Optimal Blank Shape Design Using The Initial Velocity of Boundary Modes, J. Mater. Process. Technol., Vol. 134, No. 1, pp. 92-98. https://doi.org/10.1016/S0924-0136(02)00927-5
  18. LSTC, 2009, LS-DYNA Ver. 971 User Manual $^\ast$MAT_106, LSTC, Seoul, Korea, pp. 398-400.

Cited by

  1. Development of the Compound Die Forming Technology United between Semi-Progressive and Transfer Die vol.14, pp.4, 2015, https://doi.org/10.14775/ksmpe.2015.14.4.126
  2. Effect of hot-stamping process conditions on the changes in material strength vol.16, pp.4, 2015, https://doi.org/10.1007/s12239-015-0063-9
  3. Non-isothermal Stamping Analysis of Automotive Seat Cushion Panel Using Mg Alloy Sheet vol.24, pp.5, 2016, https://doi.org/10.7467/KSAE.2016.24.5.605
  4. Research on Torsion Beam with High Strength Steel Materials Forming vol.723, 2016, https://doi.org/10.4028/www.scientific.net/KEM.723.136
  5. A Study on the Complex Automation Die Manufacturing Technology for an Automotive Seat Cushion Panel vol.23, pp.2, 2014, https://doi.org/10.5228/KSTP.2014.23.2.75