• Title/Summary/Keyword: Stall delay

Search Result 19, Processing Time 0.022 seconds

Aerodynamic Characteristics of Several Airfoils for Design of Passive Pitch Control Module of 10 kW Class (10kW 급 풍력 블레이드의 수동형 피치제어 모듈의 설계를 위한 여러가지 익형의 공력 특성에 관한 연구)

  • Kang, Sang Kyun;Lee, Ji Hyun;Lee, Jang-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.609-617
    • /
    • 2014
  • Even though the variable pitch control of a wind turbine blade is known as an effective component for power control over the rated wind speed, it has limited applicability to small wind turbines because of its relatively high cost on the price of small wind turbine. Instead, stall control is generally applied in the blade design without any additional cost. However, stall delay can frequently be caused by high turbulence around the turbine blade, and it can produce control failures through excessive rotational speed and overpowering the electrical generator. Therefore, a passive pitch control module should be considered, where the pitch moves with the aerodynamic forces of the blade and returns by the elastic restoring force. In this study, a method to calculate the pitch moment, torque, and thrust based on the lift and drag of the rotating blade wing was demonstrated, and several effective wing shapes were reviewed based on these forces. Their characteristics will be estimated with variable wind speed and be utilized as basic data for the design of the passive pitch control module.

COMPUTATIONAL FLUID DYNAMICS OF THE LOW-SPEED LONGITUDINAL AERODYNAMIC CHARACTERISTICS FOR BWB TYPE UCAV CONFIGURATION (연속일체형 날개-동체 타입 UCAV 형상의 저속 종방향 공력특성에 대한 전산유동해석)

  • Park, S.H.;Chang, K.;Shim, H.J.;Sheen, D.J.;Park, S.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.48-54
    • /
    • 2016
  • In the present work, numerical simulations were conducted on the scaled model of the BWB type UCAV in the subsonic region using ANSYS FLUENT V15. The prediction method was validated through comparison with experimental results and the effect of the twisted wing was investigated. To consider the transitional flow phenomenon, ${\gamma}$ transition model based on SST model was adopted. The coefficients of lift, drag and pitching moment were compared with experimental results and the pressure distribution and streamlines were investigated. The twisted wing decreases the lift force but increases lift-to-drag ratio through delay of stall and leading edge vortex's movement to the front, also the non-linearity of the pitching moment is decreased.

Prediction of Aerodynamic Loads for NREL Phase VI Wind Turbine Blade in Yawed Condition

  • Ryu, Ki-Wahn;Kang, Seung-Hee;Seo, Yun-Ho;Lee, Wook-Ryun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.157-166
    • /
    • 2016
  • Aerodynamic loads for a horizontal axis wind turbine of the National Renewable Energy Laboratory (NREL) Phase VI rotor in yawed condition were predicted by using the blade element momentum theorem. The classical blade element momentum theorem was complemented by several aerodynamic corrections and models including the Pitt and Peters' yaw correction, Buhl's wake correction, Prandtl's tip loss model, Du and Selig's three-dimensional (3-D) stall delay model, etc. Changes of the aerodynamic loads according to the azimuth angle acting on the span-wise location of the NREL Phase VI blade were compared with the experimental data with various yaw angles and inflow speeds. The computational flow chart for the classical blade element momentum theorem was adequately modified to accurately calculate the combined functions of additional corrections and models stated above. A successive under-relaxation technique was developed and applied to prevent possible failure during the iteration process. Changes of the angle of attack according to the azimuth angle at the specified radial location of the blade were also obtained. The proposed numerical procedure was verified, and the predicted data of aerodynamic loads for the NREL Phase VI rotor bears an extremely close resemblance to those of the experimental data.

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

Establishment of DNN and Decoder models to predict fluid dynamic characteristics of biomimetic three-dimensional wavy wings (DNN과 Decoder 모델 구축을 통한 생체모방 3차원 파형 익형의 유체역학적 특성 예측)

  • Minki Kim;Hyun Sik Yoon;Janghoon Seo;Min Il Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.49-60
    • /
    • 2024
  • The purpose of this study establishes the deep neural network (DNN) and Decoder models to predict the flow and thermal fields of three-dimensional wavy wings as a passive flow control. The wide ranges of the wavy geometric parameters of wave amplitude and wave number are considered for the various the angles of attack and the aspect ratios of a wing. The huge dataset for training and test of the deep learning models are generated using computational fluid dynamics (CFD). The DNN and Decoder models exhibit quantitatively accurate predictions for aerodynamic coefficients and Nusselt numbers, also qualitative pressure, limiting streamlines, and Nusselt number distributions on the surface. Particularly, Decoder model regenerates the important flow features of tiny vortices in the valleys, which makes a delay of the stall. Also, the spiral vortical formation is realized by the Decoder model, which enhances the lift.

Influences of Blowing Jet Type and Jet Angle on the Flow Control of Elliptic Airfoil (타원형 날개꼴의 유동제어에서 브로잉 제트 형태와 제트 각도의 영향)

  • Lee, Ki-Young;Sohn, Myong-Hwan;Jang, Young-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.47-53
    • /
    • 2004
  • An Experimental investigation into the effects of the blowing jet type and jet orientation on the aerodynamic characteristics over an elliptic type airfoil is explored. This study is aimed at expanding the data base of blowing jet application in separation control of elliptic airfoil. Present data includes: surface pressure, blowing jet exit velocity measurements and integrated aerodynamic loads. The experiments were performed for an elliptic airfoil at Reynolds number $8.22{\times}10^5$. The improvement of effects of pulsed jet on the increase of aerodynamic characteristics was significant for the post-stall angle. For reduced mass flow rates, pulsed jet allowed considerably higher lift to be generated. The jet orientation also showed dominant parameter on the separation control Positive jet angle delay or avoid separation, whereas negative jet angle promotes it.

Design of a high-performance floating-point unit adopting a new divide/square root implementation (새로운 제산/제곱근기를 내장한 고성능 부동 소수점 유닛의 설계)

  • Lee, Tae-Young;Lee, Sung-Youn;Hong, In-Pyo;Lee, Yong-Surk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.79-90
    • /
    • 2000
  • In this paper, a high-performance floating point unit, which is suitable for high-performance superscalar microprocessors and supports IEEE 754 standard, is designed. Floating-point arithmetic unit (AU) supports all denormalized number processing through hardware, while eliminating the additional delay time due to the denormalized number processing by proposing the proposed gradual underflow prediction (GUP) scheme. Contrary to the existing fixed-radix implementations, floating-point divide/square root unit adopts a new architecture which determines variable length quotient bits per cycle. The new architecture is superior to the SRT implementations in terms of performance and design complexity. Moreover, sophisticated exception prediction scheme enables precise exception to be implemented with ease on various superscalar microprocessors, and removes the stall cycles in division. Designed floating-point AU and divide/square root unit are integrated with and instruction decoder, register file, memory model and multiplier to form a floating-point unit, and its function and performance is verified.

  • PDF

Temperature-Aware Microprocessor Design for Floating-Point Applications (부동소수점 응용을 위한 저온도 마이크로프로세서 설계)

  • Lee, Byeong-Seok;Kim, Cheol-Hong;Lee, Jeong-A
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.532-542
    • /
    • 2009
  • Dynamic Thermal Management (DTM) technique is generally used for reducing the peak temperature (hotspot) in the microprocessors. Despite the advantages of lower cooling cost and improved stability, the DTM technique inevitably suffers from performance loss. This paper proposes the DualFloating-Point Adders Architecture to minimize the performance loss due to thermal problem when the floating-point applications are executed. During running floating-point applications, only one of two floating-point adders is used selectively in the proposed architecture, leading to reduced peak temperature in the processor. We also propose a new floorplan technique, which creates Space for Heat Transfer Delay in the processor for solving the thermal problem due to heat transfer between adjacent hot units. As a result, the peak temperature drops by $5.3^{\circ}C$ on the average (maximum $10.8^{\circ}C$ for the processor where the DTM is adopted, consequently giving a solution to the thermal problem. Moreover, the processor performance is improved by 41% on the average by reducing the stall time due to the DTM.

A Study on Motion Estimation Encoder Supporting Variable Block Size for H.264/AVC (H.264/AVC용 가변 블록 크기를 지원하는 움직임 추정 부호기의 연구)

  • Kim, Won-Sam;Sohn, Seung-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1845-1852
    • /
    • 2008
  • The key elements of inter prediction are motion estimation(ME) and motion compensation(MC). Motion estimation is to find the optimum motion vectors, not only by using a distance criteria like the SAD, but also by taking into account the resulting number of 비트s in the 비트 stream. Motion compensation is compensate for movement of blocks of current frame. Inter-prediction Encoding is always the main bottleneck in high-quality streaming applications. Therefore, in real-time streaming applications, dedicated hardware for executing Inter-prediction is required. In this paper, we studied a motion estimator(ME) for H.264/AVC. The designed motion estimator is based on 2-D systolic array and it connects processing elements for fast SAD(Sum of Absolute Difference) calculation in parallel. By providing different path for the upper and lower lesion of each reference data and adjusting the input sequence, consecutive calculation for motion estimation is executed without pipeline stall. With data reuse technique, it reduces memory access, and there is no extra delay for finding optimal partitions and motion vectors. The motion estimator supports variable-block size and takes 328 cycles for macro-block calculation. The proposed architecture is local memory-free different from paper [6] using local memory. This motion estimation encoder can be applicable to real-time video processing.