• 제목/요약/키워드: Stainless Steel Plate

Search Result 266, Processing Time 0.024 seconds

Corrosion characteristics and interfacial contact resistances of TiN and CrN coatings deposited by PVD on 316L stainless steel for polymer electrolyte membrane fuel cell bipolar plates

  • Lee, Jae-Bong;Oh, In Hwan
    • Corrosion Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • In a polymer membrane fuel cell stack, the bipolar plate is a key element because it accounts for over 50% of total costs of the stack. In order to lower the cost of bipolar plates, 316L stainless steels coated with nitrides such as TiN and CrN by physical vapor deposition were investigated as alternative materials for the replacement of traditional brittle graphite bipolar-plates. For this purpose, interfacial contact resistances were measured and electrochemical corrosion tests were conducted. The results showed that although both TiN and CrN coatings decreased the interfacial contact resistances to less than $10m{\Omega}{\cdot}cm^2$, they did not significantly improve the corrosion resistance in simulated polymer electrolyte membrane fuel cell environments. A CrN coating on 316L stainless steel showed better corrosion resistance than a TiN coating did, indicating the possibility of using modified CrN coated metallic bipolar plates to replace graphite bipolar plates.

A comparative study of experiment and analysis of sheet matal in V-bending (V-벤딩 금형에서 박판 소재의 실험과 해석을 통한 스프링 백 비교 고찰)

  • Jeong, Gyun-Min;Choi, Kye-Kwang
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.21-25
    • /
    • 2021
  • When the product is removed from the mold after molding during the sheet metal molding process, elastic recovery causes a springback phenomenon. Much research has been done to minimize this phenomenon. In this study, V-bending experiments were conducted using galvanized steel sheets, stainless steel, and aluminum sheet materials, using a total of nine types of thin sheet materials of 1.0t, 1.5t, and 2.0t, respectively. Molding analysis and experimental data were compared and analyzed. In the case of galvanized steel sheets, it was considered that the springback phenomenon occurs more frequently in molding analysis than in experiments. It was considered that the springback phenomenon occurs greatly in the experiment, not the interpretation of the molding of the stainless steel plate and the aluminum plate. It was considered that the springback occurrence tendency of the molding analysis and the experiment was the same, and the springback occurrence error rate of the molding analysis and the experimental result was about 4.0%.

Experimental investigation of carbon steel and stainless steel bolted connections at different strain rates

  • Cai, Yancheng;Young, Ben
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.551-565
    • /
    • 2019
  • A total of 36 carbon steel and stainless steel bolted connections subjected to shear loading at different strain rates was experimentally investigated. The connection specimens were fabricated from carbon steel grades 1.20 mm G500 and 1.90 mm G450, as well as cold-formed stainless steel types EN 1.4301 and EN 1.4162 with nominal thickness 1.50 mm. The connection tests were conducted by displacement control test method. The strain rates of 10 mm/min and 20 mm/min were used. Structural behaviour of the connection specimens tested at different strain rates was investigated in terms of ultimate load, elongation corresponding to ultimate load and failure mode. Generally, it is shown that the higher strain rate on the bolted connection specimens, the higher ultimate load was obtained. The ultimate loads were averagely 2-6% higher, while the corresponding elongations were averagely 8-9% higher for the test results obtained from the strain rate of 20 mm/min compared with those obtained from the lower strain rates (1.0 mm/min for carbon steel and 1.5 mm/min for stainless steel). The connection specimens were generally failed in plate bearing of the carbon steel and stainless steel. It is shown that increasing the strain rate up to 20 mm/min generally has no effect on the bearing failure mode of the carbon steel and stainless steel bolted connections. The test strengths and failure modes were compared with the results predicted by the bolted connection design rules in international design specifications, including the Australian/New Zealand Standard (AS/NZS4600 2018), Eurocode 3 - Part 1.3 (EC3-1.3 2006) and North American Specification (AISI S100 2016) for cold-formed carbon steel structures as well as the American Specification (ASCE 2002), AS/NZS4673 (2001) and Eurocode 3 - Part 1.4 (EC3-1.4 2015) for stainless steel structures. It is shown that the AS/NZS4600 (2018), EC3-1.3 (2006) and AISI S100 (2016) generally provide conservative predictions for the carbon steel bolted connections. Both the ASCE (2002) and the EC3-1.4 (2015) provide conservative predictions for the stainless steel bolted connections. The EC3-1.3 (2006) generally provided more accurate predictions of failure mode for carbon steel bolted connections than the AS/NZS4600 (2018) and the AISI S100 (2016). The failure modes of stainless steel bolted connections predicted by the EC3-1.4 (2015) are more consistent with the test results compared with those predicted by the ASCE (2002).

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

Environmental Exposure Performance of a Panel-Type Glass-Fiber-Reinforced Polymer Composite Clamping Plate for an Improved Moveable Weir (개량형 가동보에 적용하기 위한 패널형 유리섬유보강 폴리머 복합재료 클램핑 플레이트의 환경노출 성능)

  • Yoo, Seong-Yeoul;Jeon, Jong-Chan;Shin, Hyung-Jin;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.73-81
    • /
    • 2017
  • The improved movable weir supplements the advantages and disadvantages of the rubber weir and the conduction gate. It consists of a stainless steel gate, air bags, and a steel clamping plate. The stainless steel gate is the main body of the weir, and the inflatable rubber sheet serves to support the steel gate. The steel clamping plate is typically in direct continuous contact with water, but this leads to corrosion issues that can reduce the life of the entire movable weir. In this study, a panel-type glass-fiber-reinforced polymer (GFRP) clamping plate was designed and fabricated. The test results showed that the flexural load of the panel-type GFRP composite clamping plate was over twice that of the wings type GFRP clamping plate. The lowest moisture absorption value was obtained upon exposure to tap water, and exposure to other solutions showed similar values. Additionally, flexural load testing after exposure to an accelerated environment found the lowest residual loads of 80.51 % and 78.50 % at 50 and 100 days, respectively, for exposure to a $CaCl_2$ solution, while exposure to other environments showed residual failure loads of over 80 % at both 50 and 100 days.

Relationship between the Applied Torque and CCT to obtain the Same Corrosion Resistance for the Plate and Cylindrical Shape Stainless Steels

  • Chang, Hyun Young;Kim, Ki Tae;Kim, Nam In;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.58-68
    • /
    • 2016
  • Many industries need the universal standard or technique to obtain the identical CCT regardless of specimen geometries. This study aimed to determine an appropriate applied torque to the cylindrical specimen defining the apparatus and the procedure to measure the temperature of initiating crevice corrosion in tubular shape products such as pipes, tubes and round rods etc; the test method also proved applicable to the plate type specimen. A series of experiments for CCT measurements with the plate type and cylindrical stainless steel specimens of various diameters with different microstructures (austenitic and duplex) and PRENs were conducted to determine the relationship among geometries on CCT. Thus, the apparatus that could measure the CCT of stainless steels with both plate and cylindrical geometries was newly designed. The use of the apparatus facilitated the same CCT value for both geometries only if the specimens were made of the same alloy. The applied torque can be calculated for various diameters of the cylindrical specimens using the following relation; Applied torque, $Nm=-0.0012D^2+0.019D+2.4463$ (D; the diameter of cylindrical specimen, mm). However, upwards of 35 mm diameter cylindrical specimens require 1.58Nm, which is the same torque for the plate type specimen; in addition, this test method cannot be used for cylindrical specimens of less than 15 mm diameter.

Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment

  • Kim, Kwang-Min;Koh, Seong-Ung;Kim, Kyoo-Young
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.338-343
    • /
    • 2008
  • The electrochemical properties of W-modified austenitic stainless steels containing Ta and La were evaluated in a $H_{3}PO_{4}$ type PEMFC environment. Electrochemical test was conducted in 0.05 M $H_{3}PO_{4}$ solution at $80^{\circ}C$ and electrical property was conducted by contact resistance test. XPS was conducted to analyze the chemical elements consisting of passive film. Addition of La and Ta in W-modified austenitic stainless steel shows not only better corrosion resistance but also better electrical property.

Multi-layered Coating Deposited on PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 다층 코팅의 증착)

  • Yun, Young-Hoon;Chung, Hoon-Taek;Cha, In-Su;Choi, Jeong-Sik;Kim, Dong-Mook;Jung, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.472-476
    • /
    • 2008
  • The surface region of commercial stainless steel 304 and 316 plates has been modified through deposition of the multi-layered coatings composed of titanium film ($0.1{\mu}m$) and gold film ($1-2{\mu}m$) by an electron beam evaporation method. XRD patterns of the stainless steel plates deposited with conductive metal films showed the peaks of the external gold film and the stainless steel substrate. Surface microstructural morphologies of the stainless steel bipolar plates modified with multi-layered coatings were observed by AFM and FE-SEM images. The stainless steel plates modified with $0.1{\mu}m$ titanium film and $1{\mu}m$ gold film showed microstructure of grains of under 100 nm diameter. The external surface of the stainless steel plates deposited with $0.1{\mu}m$ titanium film and $2{\mu}m$ gold film represented somewhat grain growth of Au grains in FE-SEM image. The electrical resistance and water contact angle of the stainless steel bipolar plates modified with multi-layered coatings were examined with the thickness of the gold film.

The Effect of Mo Addition on Oxygen Vacancies in the Oxide Scale of Ferritic Stainless Steel for SOFC Interconnects

  • Dae Won Yun;Hi Won Jeong;Seong Moon Seo;Hyung Soo Lee;Young Soo Yoo
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.33-40
    • /
    • 2024
  • The concentration and diffusion coefficient of oxide ion vacancies in the oxide scale formed on Fe-22Cr-0.5Mn ferritic stainless steel with and without molybdenum (Mo) was measured at 800℃ by the electrochemical polarization method. After pre-oxidation for 100 h in ambient air at 800 ℃, the oxide scale on one side was completely removed with sandpaper. A YSZ plate was placed on the side where the oxide scale remained. Platinum (Pt) meshes were attached on the top of the YSZ plate and the side where the oxide scale was removed. Changes in electrical current were measured after applying an electrical potential through Pt wires welded to the Pt meshes. The results were interpreted by solving the diffusion equation. The diffusion coefficient and concentration of oxide ion vacancy decreased by 30% and 70% in the specimen with Mo, respectively, compared to the specimen without Mo. The oxide ion vacancy concentration of chromia decreased due to the addition of Mo.