• Title/Summary/Keyword: Stable iodine

Search Result 46, Processing Time 0.024 seconds

Purification and Characteristics of Tyrosinase Inhibitor Produced by Actinomycetes F-97 (방선균 F-97이 생산하는 Tyrosinase 저해제의 정제 및 특징)

  • Bang, Byung-Ho;Rhee, Moon-Soo;Kim, Jin-O;Yi, Dong-Heui
    • Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • An actinomycetes F-97 producing tyrosinase inhibitor was isolated from soil samples. Isolation and purification of tyrosinase inhibitor produced by F-97 was performed as follows: IRC-120 ($NH_4^+$ type) column chromatography, silica gel column chromatography, $C_{18}$ column chromatography and Sephadex LH-20 column chromatography were used successively after the centrifuged supernatant was adjusted to pH 4.0. To identify the purity of the inhibitor, octadecylsilyl(ODS) HPLC was carried out with 5% methanol as a mobile phase. Finally, the purification yield of a tyrosinase inhibitor was 5.24%. The inhibitor was very soluble in water, methanol and ethanol but insoluble in acetone, butanol, ethylacetate and chloroform. The ${\lambda}_{max}$ value of this inhibitor in water was 194nm under UV light. The biochemical test of the inhibitor was positive in Molish, Benedict, cone. $H_2SO_4$, and $KMnO_4$ tests but negative in iodine, ninhydrin, Million, Sakaguchi, xanthoproteic and Emerson tests. The tyrosinase inhibitor was stable against heat treatment of $100^{\circ}C$ for 50 minutes and pH $4{\sim}9$. The $IC_{50}$ value of this inhibitor was $19.2{\mu}g/ml$ for mushroom tyrosinase. In $1,000{\mu}g/ml$ inhibitor concentration, inhibition zone was 27 mm for Streptomyces bikiniensis NRRL B-1049. The inhibition of F-97 against mushroom tyrosinase was competitive with tyrosine.

Isolation and Characterization of Cathepsin B inhilbitor Produced by Streptomyces luteogriseus KT-10 (Streptomyces luteogriseus KT-10 이 생산하는 Cathepsin B 저해물질의 분리 및 특성)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.2
    • /
    • pp.84-89
    • /
    • 2001
  • Isolation and Characterization of Cathepsin B inhibitor Produced by Streptomyces luteogriseus KT-IO. Han, Kil~Hwan and Sang~Dal Kim*. Department of Applied Microbiology, Yeungnam Universit}/t Kyongsan 712749, Korea - The cathepsin B inhibitor produced by Streptomyces luteogriseus KT-IO was very stable in heat, acidic and alkaline conditions. The cathepsin B inhibitor was isolated from the extracted fraction of culture broth with butanol, methanol and chloroform subsequently, the inhibitor was purified with following several column chromatography sLlch as DEAE-Sephadex A-25, Sephadex G-15, silica gel 60, Sephadex LH-20, and preparative HPLC. The cathepsin B inhibitor showed positively to detective reaction of ninhydrine, 5% H2S04, iodine, but negatively to the reaction of Ehrlich's reagent, DNS, aniline. The molecular formular of cathepsin B inhibitor was elucidated by JR, lH and 13C-NMR, FAB mass and elemental analyzer. Consequently, it was identified as C4HlI04N6. The cathepsin B inhibitor had the mode of competitive inhibition with the reaction of cathepsin B.

  • PDF

Characterization of Erythritol 4-Phosphate Dehydrogenase from Penicillium sp. KJ81 (Penicillium sp. KJ81이 생산하는 Erythritol 4-Phosphate Dehydrogenase의 특성)

  • Yun, Na-Rae;Park, Sang-Hee;Lim, Jai-Yun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • In this study, the characterization of purified erythritol 4-phosphate dehydrogenase, key enzyme of erythritol biosynthesis, produced by Penicillium sp. KJ81 was investigated. Optimum production conditions of erythritol 4-phosphate dehydrogenase was 1 vvm areration, 200 rpm agitation, at $37^{\circ}C$ for 8 days in the medium containing 30% sucrose, 0.5% yeast extract, 0.5% $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, and 0.05%$MgCl_2$. Erythritol 4-phosphate dehydrogenase was purified through ultrafiltration and preparative gel electrophoresis from cell extract of Penicillium sp. KJ81. This enzyme was especially active on erythrose 4-phosphate with 1.07 mM of Km value. It gave a single band on native polyacrylamide gel electrophoresis and an isoelectric point of 4.6. The enzyme had an optimal activity at pH 7.0 and $30^{\circ}C$. It was stable between pH 4.0 and 9.0, and also below $30^{\circ}C$. The enzyme activity was completely inhibited by 1mM $Cu^{2+}$ and 1 mM $Zn^{2+}$, but was not significantly affected by other cations tested. This enzyme was inactivated by treatment of tyrosine specific reagent, iodine and tryptophan specific reagent, N-bromosuccinimide. The substrate of the enzyme, erythrose 4-phosphate showed protective effect on the inactivation of the enzyme by both reagents. These results suggest that tryptophan and tyrosine residues are probably located at or near active site of the enzyme.

Characteristics and Action Pattern of Polygalacturonase from Rhizopus oryzae CJ-2114 (Rhizopus oryzae CJ-2114가 생성하는 Polygalacturonase의 특성 및 작용양상)

  • Chung, Yung-Gun;Cho, Young-Je;Kwon, Oh-Jin;Choi, Cheong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.2
    • /
    • pp.195-200
    • /
    • 1992
  • Rhizopus oryzae CJ-2114 was selected for its strong polygalacturonase activity among various strains of mold found in soil. The optimum pH for the enzyme activity was 4.0 and optimum temperature was 4$0^{\circ}C$. The activation energy for the polygalacturonase was calculated by Arrhenius equation was 2.048㎉/㏖. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the Km value of 54.05mM with the $V_{max}$ of 13.9m mole/min. The enzyme is relatively stable in acidic condition. The activity of polygalactur-onase was inhibited completely by C $u^{2+}$, P $b^{2+}$ and Z $n^{2+}$, $_Mn^{2+}$ at concentration of 1 mM. The enzyme can be inactivated by the treatment with maleic anhydride and iodine. The results indicate the possible involvement of histidine at active site. When polygalacturonase from Rhizopus oryzae CJ-2114 was reacted with poly-galacturonic acid as a substrate mono-, di-, and oligogalacturonic acid were produced at early and mono-, digalacturonic acid produced at late incubation time. time.

  • PDF

Characteristics and Action Pattern of ${\alpha}-galactosidase$ from Scopulariopsis brevicaulis in Korean Traditional Meju (한국 재래 간장에서 분리한 Scopulariopsis brevicaulis가 생성하는 ${\alpha}-galactosidase$의 특성 및 작용양상)

  • Choi, Kwang-Soo;Lee, Seon-Ho;Hong, Seung-Pyo;Lee, Hee-Duck;Bae, Du-Kyung;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.489-495
    • /
    • 1998
  • The optimum culture condition of Scopulariopsis brevicaulis for the production of ${\alpha}$-galactosidase was as follows: Tryptone 1.5%, $NH_4NO_3$ 0.2%, Raffinose 2.5%, $KH_2PO_4$ 0.5%, yeast extract 0.5%, pH 7.0, $27^{\circ}C$. The optimum pH and temperature for the enzyme activity of ${\alpha}$-galactosidase producing Scopulariopsis brevicaulis were pH 7.0 and $27^{\circ}C$, respectively. The enzyme was relatively stable at $pH\;6.0{\sim}8.0$ and at temperature below $40^{\circ}C$. The activity of the enzyme was inhibited by $Ag^{2+},\;Hg^{2+},\;Cu^{2+}$, p-chloromercuribenzoic acid and Iodine. These results would indicate the presence of -SH groups in the catalytic site of the enzyme. Km value was 1.9 mM for $p-nitrophenyl-{\alpha}-D-galactopyranoside$ and Vmax value was $9.66{\times}10^2\;{\mu}M/min$. Sugar constituents of culture broth were identified by HPLC that the enzyme liberated sucrose, glucose and fructose from raffinose and raffinose was significantly decreased.

  • PDF

Production of Cyclodextrin Glucanotransferase from Aspergillus sp. CC-2-1 and its Characterization (Aspergillus sp. CC-2-1에 의해 생산되는 Cyclodextrin Glucanotransferase의 생산 및 특성)

  • Cho, Young-Je;Kim, Myoung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1158-1167
    • /
    • 2000
  • To produce ${\beta}-cyclodextrin({\beta}-CD)$, a cyclodextrin glucanotransferase(CGTase) producing Aspergillus sp. CC-2-1 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. It was found that production of CGTase reached to the maximum when the wheat bran medium containing 0.1% albumin, 2% $(NH_4)_2S_2O_8$, 2% soluble starch and 0.2% $KH_2PO_4$ was cultured for 5 days at $37^{\circ}C$. The purity of CGTase was increased by 13.14 folds after DEAE-cellulose ion exchange chromatography and Sephadex G-100, G-150 gel filtration and the specific activity was 172.14 unit/mg. Purified enzyme was confirmed as a single band by the polyacrylamide gel electrophoresis. The molecular weight of CGTase was estimated to be 27,800 by Sephadex G-100 gel filtration and SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the CGTase activity were 9.0 and $80^{\circ}C$, respectively. The enzyme was stable in pH $8.0{\sim}11.0$ at $60{\sim}80^{\circ}C$. The activity of purified enzyme was activated by $K^+,\;Cu^{2+}$ and $Zn^{2+}$. The activity of the CGTase was inhibited by the treatment with 2,4-dinitrophenol and iodine. The result suggests that the purified enzyme has phenolic hydroxyl group of tyrosine, histidine imidazole group and terminal amino group at active site. The reaction of this enzyme followed typical Michaelis-Menten kinetics with the $K_m$ value of 18.182 g/L with the $V_{max}$ of 188.68 ${\mu}mole/min$. The activation energy for the CGTase was calculated by Arrhenius equation was 1.548 kcal/mol.

  • PDF

Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants

  • Sirikhachornkit, Anchalee;Vuttipongchaikij, Supachai;Suttangkakul, Anongpat;Yokthongwattana, Kittisak;Juntawong, Piyada;Pokethitiyook, Prayad;Kangvansaichol, Kunn;Meetam, Metha
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.854-866
    • /
    • 2016
  • The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

Feasibility Study on Silver Nanoparticle Application to a Radioisotope Carrier (은나노입자의 방사성 동위원소 운반체 적용 유효성 검증 연구)

  • Jang, Beom-Su;Lee, Joo-Sang;Park, Hae-Jun;Kim, Hwa-Jung;Park, Sang Hyun
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • In this study, an Ag-polyaniline-silica (Ag-PANI-silica) nanoparticle was evaluated as a radioisotope carrier. An Ag-PANI-silica nanoparticle was incubated in the $^{125}I$ solution for a duration of 24 hr to test its radioisotope absorptivity. During the incubation, radioactivity of the nanoparticle was measured at 3, 6, 12, and 24 hr. After a 24 hr incubation, $^{125}I$-Ag-PANI-silica nanoparticle was incubated in a fresh saline for a duration of 48 hr to check its stability. Additionally, the $^{125}I$-Ag-PANI-silica nanoparticle was injected to the ICR mouse to investigate its in-vivo distribution characteristics. The $^{125}I$ absorption yield of the Ag-PANI-silica nanoparticle was higher than 95% after a 6 hr incubation period in the $^{125}I$ solution. And $^{125}I$-Ag-PANI-silica was stable for 48 hr at 80% yield at room temperature. The SPECT/CT image of a mouse that received $^{125}I$-Ag-PANI-silica complex showed that the $^{125}I$-Ag-PANI-silica complex was distributed in the lung, stomach and thyroid at 30 min post injection. From these results, the Ag-PANI-silica nanoparticle has good radio-iodine carrying property and can be applicable for the purpose of diagnosis and therapy.

Characterization of Platycodon grandiflorum Seeds Oil Extracted by Supercritical Carbon Dioxide (초임계 이산화탄소를 이용하여 추출된 도라지 종자유의 특성)

  • Kim, Yangji;Imm, Jee-Young;Kim, Seok Joong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.99-110
    • /
    • 2018
  • In this study, oil of Platycodon grandiflorum seeds was prepared using supercritical carbon dioxide extraction (SCE) and its physicochemical indices as a new edible oil were investigated. Compared to Soxhlet solvent extraction, SCE under the condition of 6,000 psi at $40^{\circ}C$ produced more oil, especially from the roasted seeds to 32.7%. TLC analysis showed triacylglycerols accounted for most of the oil obtained from roasted Platycodon grandiflorum seeds by SCE similarly to commercial soybean oil or perilla seeds oil. The oil had highly unsaturated lipid with considerable amount of linoleic acid(73.27%) much more than two commercial oils followed by oleic acid(13.16%). Physicochemical properties of the oil were as follows; specific gravity, 0.92; dynamic viscosity, 45.37 cP; refractive index, 1.48; color, L=47.30, a=-3.69, b=25.72; iodine value, 141.57 g $I_2/100g$ oil; saponification value, 191.21 mg of KOH/g of oil; acid value, 2.60 mg of KOH/g of oil. Among those, refractive index, viscosity and iodine value, which were related to unsaturation degree of lipid, were ranged between those of two commercial oils. The oxidation stability of oil(2.03 hr) was also ranged between less stable perilla seeds oil(1.79 hr) and more stable soybean oil(2.94 hr) based on the induction time measured by Rancimat assay. In addition to extraction yield increase, seeds roasting provided further benefits such as reductions of cholesterol ester content and acid value without change in fatty acid composition. In conclusion, oil was extracted from the roasted Platycodon grandiflorum seeds at high yield by supercritical carbon dioxide and it seemed to have proper characteristics as a edible oil.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.