Browse > Article
http://dx.doi.org/10.12925/jkocs.2018.35.1.99

Characterization of Platycodon grandiflorum Seeds Oil Extracted by Supercritical Carbon Dioxide  

Kim, Yangji (Department of Food and Nutrition, Dongduk Women's University)
Imm, Jee-Young (Department of Food and Nutrition, Kookmin University)
Kim, Seok Joong (Department of Food and Nutrition, Dongduk Women's University)
Publication Information
Journal of the Korean Applied Science and Technology / v.35, no.1, 2018 , pp. 99-110 More about this Journal
Abstract
In this study, oil of Platycodon grandiflorum seeds was prepared using supercritical carbon dioxide extraction (SCE) and its physicochemical indices as a new edible oil were investigated. Compared to Soxhlet solvent extraction, SCE under the condition of 6,000 psi at $40^{\circ}C$ produced more oil, especially from the roasted seeds to 32.7%. TLC analysis showed triacylglycerols accounted for most of the oil obtained from roasted Platycodon grandiflorum seeds by SCE similarly to commercial soybean oil or perilla seeds oil. The oil had highly unsaturated lipid with considerable amount of linoleic acid(73.27%) much more than two commercial oils followed by oleic acid(13.16%). Physicochemical properties of the oil were as follows; specific gravity, 0.92; dynamic viscosity, 45.37 cP; refractive index, 1.48; color, L=47.30, a=-3.69, b=25.72; iodine value, 141.57 g $I_2/100g$ oil; saponification value, 191.21 mg of KOH/g of oil; acid value, 2.60 mg of KOH/g of oil. Among those, refractive index, viscosity and iodine value, which were related to unsaturation degree of lipid, were ranged between those of two commercial oils. The oxidation stability of oil(2.03 hr) was also ranged between less stable perilla seeds oil(1.79 hr) and more stable soybean oil(2.94 hr) based on the induction time measured by Rancimat assay. In addition to extraction yield increase, seeds roasting provided further benefits such as reductions of cholesterol ester content and acid value without change in fatty acid composition. In conclusion, oil was extracted from the roasted Platycodon grandiflorum seeds at high yield by supercritical carbon dioxide and it seemed to have proper characteristics as a edible oil.
Keywords
Platycodon grandiflorum; seed; oil; supercritical extraction; fatty acid;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. Wang, G. B. Schuller Levis, E. B. Lee, W. R. Levis, D. W. Lee, B. S. Kim, S. Y. Park, E. Park, “Platycodin D and $D_3$ Isolated from the Root of Platycodon grandiflorum Modulate the Production of Nitric Oxide and Secretion of TNF-${\alpha}$ in Activated RAW 264.7 Cells,” Int. Immunopharmacol., Vol. 4, No. 8, pp. 1039-1049, (2004).   DOI
2 E. Nyakudya, J. H. Jeong, N. K. Lee, Y. S. Jeong, “Platycosides from the Roots of Platycodon grandiflorum and Their Health Benefits,” Prev. Nutr. Food Sci., Vol. 19, No. 2, pp. 59-68, (2014).   DOI
3 J. W. Lee, S. H. Ji, G. S. Kim, K. S. Song, Y. Um, O. T. Kim, Y. Lee, C. P. Hong, D. H. Shin, C. K. Kim, S. E. Lee, Y. S. Ahn, D. Y. Lee, “Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS,” Int. J. Mol. Sci., Vol. 16, No. 11, pp. 26786-26796, (2015).   DOI
4 C. H. Jeong, K. H. Shim, "Chemical Composition and Antioxidative Activities of Platycodon grandiflorum Leaves and Stems," J. Korean Soc. Food Sci. Nutr. Vol. 35, No. 5, pp. 511-515, (2006).   DOI
5 C. H. Jeong, G. N. Choi, J. H. Kim, J. H. Kwak, D. O. Kim, Y. J. Kim, H. J. Hoe, “Antioxidant Activities of the Aerial Parts of Platycodon grandiflorum,” Food Chem., Vol. 118, No. 2, pp. 278-282, (2010).   DOI
6 R. M. Zhao, L. Liu, Q. S. Guo, “Influence of Exogenous Substance on Germination of Platycodon grandiflorum Seeds,” Zhongguo Zhong Yao Za Zhi, Vol. 31, No. 12, pp. 966-968, (2006).
7 Q. S. Guo, R. M. Zhao, L. Liu, Q. T. Dong, Z. W. Fu, “Study on Seed Quality Test and Quality Standard of Platycodon grandiflorum,” Zhongguo Zhong Yao Za Zhi, Vol. 32, No. 5, pp. 377-381, (2007).
8 E. C. M. Coxworth, “Oil and Protein Content, and Oil Composition of the Seeds of Some Plants of the Canadian Prairies,” JAOCS, Vol. 42, No. 10, pp. 891-894, (1965).   DOI
9 A. Inada H. Murata, M. Somekawa, T. Nakanishi, “Phytochemical Studies of Seeds of Medicinal Plants. II. A New Dihydroflavonol Glycoside and a New 3-methyl-1-butanol Glycoside from Seeds of Platycodon grandiflorum A. De Candolle,” Chem. Pharm. Bull., Vol. 40, No. 11, pp. 3081-3083, (1992).   DOI
10 H. J. Kim, Y. S. Cho, “Characteristics of Rhizome Rot Incidence of Platycodon grandiflorus by Ridge Width and Depth and Cultivation Period in the Seeding Place,” Korean J. Med. Crop Sci., Vol. 19, No. 4, pp. 246-250, (2011).   DOI
11 S. G. Moon, S. H. Jeong, C. M. Choi, “Classification of the Edible Plants on the Market in Busan,” Korean. J. Life Sci., Vol. 13, No. 6, pp. 764-774, (2003).   DOI
12 E. Reverchon, I. De Marco, “Supercritical Fluid Extraction and Fractionation of Natural Matter,” J. Supercrit. Fluids, Vol. 38, No. 2, pp. 146-166, (2006).   DOI
13 A. B. A. de Azevedo, T. G. Kieckbush, A. K. Tashima, R. S. Mohamed, P. Mazzafera, S. A. B. Vieira de Melo, “Extraction of Green Coffee Oil Using Supercritical Carbon Dioxide,” J. Supercrit. Fluids, Vol. 44, No. 2, pp. 186-192, (2008).   DOI
14 M. M. R. de Melo, A. J. D. Silvestre, C. M. Silva, "Supercritical Fluid Extraction of Vegetable Matrices: Applications, Trends and Future Perspectives of a Convincing Green Technology," J. Supercrit. Fluids, Vol. 92, pp. 115-176, (2014).   DOI
15 Y. K. Cho, H. S Kim, J. W Kim, S. Y. Lee, W. S. Kim, J. H. Ryu, G. B. Lim, “Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide,” Korean J. Biotechnol. Bioeng., Vol. 19, No. 6, pp. 427-432, (2004).
16 J. A. P. Coelho, A. P. Pereira, R. L. Mendes, A. M. F. Palavra, “Supercritical Carbon Dioxide Extraction of Foeniculum vulgare volatile oil,” Flavour Fragr. J., Vol. 18, No. 4, pp. 316-319, (2003).   DOI
17 E. Riera, Y. Golas, A. Blanco, J. A. Gallego, M. Blasco, A. Mulet, “Mass Transfer Enhancement in Supercritical Fluids Extraction by Means of Power Ultrasound,” Ultrason. Sonochem., Vol. 11, No. 3-4, pp. 241-244, (2004).   DOI
18 J. Martinez, A. Carolina de Aguiar, “Extraction of Triacylglycerols and Fatty Acids Using Supercritical Fluids-Review,” Curr. Anal. Chem., Vol. 10, No. 1, pp. 67-77, (2014).   DOI
19 T. White, S. Bursten, D. Federighi, R. A. Lewis, E. Nudelman, “High-resolution Separation and Quantification of Neutral Lipid and Phospholipid Species in Mammalian Cells and Sera by Multi-one-dimensional Thin-layer Chromatography,” Anal. Biochem., Vol. 258, No. 1, pp. 109-117, (1998).   DOI
20 AOAC, "Official Method of Analysis of AOAC," 18th ed., International Association of Official Analytical Communities, (2005).
21 H.T. Slover, E. Lanza, “Quantitative Analysis of Food Fatty Acids by Capillary Gas Chromatography,” JAOCS, Vol. 56, No. 12, pp. 933-943, (1979).   DOI
22 S. J. Kim, “Inhibitory Effect of Perilla Sprouts Extracts on Oxidation of Perilla Oil,” J. of Korean Oil Chemists' Soc., Vol. 29, No. 2, pp. 330-338, (2012).
23 N. Siulapwa, A. Mwambungu, "Nutritional Value of Differently Processed Soybean Seeds," Int. J. Res. Agric. Food Sci. Vol. 2, No. 6, pp. 8-16, (2014),
24 P. Li, M. A. A. Gasmalla, W. Zhang, J. Liu, R. Bing, R. Yang, "Effects of Roasting Temperatures and Grinding Type on the Yields of Oil and Protein Obtained by Aqueous Extraction Processing," J. Food Eng., Vol. 173, pp. 15-24, (2016).   DOI
25 F.J. Eller, S. C. Cermak, S. L. Taylor, "Supercritical Carbon Dioxide Extraction of Cuphea Seed Oil," Ind. Crops Products, Vol 33, pp. 554-557, (2011).   DOI
26 J. Orsavova, L. Misurcova, J. V. Ambrozova, R. Vicha, J. Mlcek, “Fatty Acids Composition of Vegetable Oils and Its Contribution, to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids,” Int. J. Mol. Sci., Vol. 16, No. 6, pp. 12871-12890, (2015).   DOI
27 E. Stahl, E. Schultz, H. M. Mangold, “Extraction of Seed Oils with Liquid and Supercritical Carbon Dioxide,” J. Agric. Food Chem., Vol. 28, No. 6, pp. 1153-1157, (1980).   DOI
28 K. H. Lim, A Medicinal Phytology (The details). p.281, Dong Myoung Sa, (1971).
29 J. P. Friedrich, G. R. List, “Characterization of Soybean Oil Extracted by Supercritical Carbon Dioxide and Hexane,” J. Agric. Food Chem., Vol. 30, No. 1, pp. 192-193, (1982).   DOI
30 H. J. Lee, T. H. Moon, B. S. Noh, P. S. Chang, G. G, Lee, S. J. Kim, S. H. Ryu, K. W. Lee, Food Chemistry, 3rd ed., p.140, Soohaksa, (2014).
31 N. J. Sung, J. K. Seo, "Medical Action of Perennial Platycodon radix," Proc. of Inst. Agr. Res. Util. Symposium for 50th Anniversary GSNU, pp. 35-47, (1998).
32 H. C. Kim, Hanyakyakrihak, pp. 350-352, Jibmoondang, (2001).
33 H. K. Kim, J. S. Choi, D. S. Yoo, Y. H. Choi, G. H. Yon, K. S. Hong, B. H. Lee, H. J. Kim, E. H. Kim, B. K. Park, Y. C. Jeong, Y. S. Kim, S. Y. Ryu, “HPLC Analysis of Saponins in Platycodi radix,” Korean J. Pharmacogn., Vol. 38, No. 2, pp. 192-196, (2007).
34 T. Kubota, H, Kitatani, H. Hinoh, “The Structure of Platycogenic Acids A, B, and C, Further Triterpenoid Constituents of Platycodon grandiflorum A. De Candolle,” J. Chem. Soc. D: Chem. Comm., Vol. 22, No. 22, pp. 1313-1314, (1969).
35 A. Tada, Y. Kaneiwa, S. Shibata, “Studies on the Saponins of the Root of Platycodon grandiflorum A. De Candolle. I. Isolation and the Structure of Platycodin-D,” Chem. Pharm. Bull., Vol. 23, No. 11, pp. 2965-2972, (1975).   DOI
36 C. Y. Shin, W. J. Lee, E. B. Lee, E. Y. Choi, K. H. Ko, “Platycodin D and $D_3$ Increase Airway Mucin Release in vivo and in vitro in Rats and Hamsters,” Planta Med., Vol. 68, No. 3, pp. 221-225, (2002).   DOI