Browse > Article
http://dx.doi.org/10.4014/jmb.1510.10022

Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants  

Sirikhachornkit, Anchalee (Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University)
Vuttipongchaikij, Supachai (Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University)
Suttangkakul, Anongpat (Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University)
Yokthongwattana, Kittisak (Department of Biochemistry, Faculty of Science, Mahidol University)
Juntawong, Piyada (Microalgal Molecular Genetics and Functional Genomics Special Research Unit, Department of Genetics, Faculty of Science, Kasetsart University)
Pokethitiyook, Prayad (Department of Biology, Faculty of Science, Mahidol University)
Kangvansaichol, Kunn (PTT Research and Technology Institute, PTT Public Company Limited)
Meetam, Metha (Department of Biology, Faculty of Science, Mahidol University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.5, 2016 , pp. 854-866 More about this Journal
Abstract
The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.
Keywords
Dunaliella; biodiesel; microalgae; mutant; starch; triacylglycerol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ball S, Marianne T, Dirick L, Fresnoy M, Delrue B, Decq A. 1991. A Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADP-glucose pyrophosphorylase. Planta 185: 17-26.   DOI
2 Bligh EG, Dyer WJ. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.   DOI
3 Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon S, Gallaher SD, Liu B, et al. 2013. Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25: 4305-4323.   DOI
4 Bölling C, Fiehn O. 2005. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 139: 1995-2005.   DOI
5 Brennan L, Owende P. 2010. Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energ. Rev. 14: 557-577.   DOI
6 Breuer G, De Jaeger L, Artus VPG, Martens DE, Springer J, Draaisma RB, et al. 2014. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors. Biotechnol. Biofuels 7: 70.   DOI
7 Breuer G, Evers WA, de Vree JH, Kleinegris DM, Martens DE, Wijffels RH, Lamers PP. 2013. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 80: 50628.
8 Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH. 2012. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour. Technol. 124: 217-226.   DOI
9 Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U. 2014. Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol. 164: 2139-2156.   DOI
10 De Jaeger L, Verbeek REM, Draaisma RB, Martens DE, Springer J, Eggink G, Wijffels RH. 2014. Superior triacylglycerol(TAG) accumulation in starchless mutants of Scenedesmus obliquus: (I) mutant generation and characterization. Biotechnol. Biofuels 7: 69.   DOI
11 Deng XD, Cai JJ, Fei XW. 2013. Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii. BMC Biochem. 14: 38.   DOI
12 Dunnahay TG, Jarvis EE, Roessler PG. 1995. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31: 1004-1012.   DOI
13 Fernandes B, Teixeira J, Dragone G, Vicente AA, Kawano S, Bišová K, et al. 2013. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the m icroalga Parachlorella kessleri. Bioresour. Technol. 144: 268-74.   DOI
14 La Russa M, Bogen C, Uhmeyer A, Doebbe A, Fillippone E, Kruse O, Mussgnug JH. 2012. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii. J. Biotechnol. 162: 13-20.   DOI
15 Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54: 621-639.   DOI
16 Kim S-H, Liu K-H, Lee S-Y, Hong S-J, Cho B-K, Lee H, et al. 2013. Effects of light intensity and nitrogen starvation on glycerolipid, glycerophospholipid, and carotenoid composition in Dunaliella tertiolecta culture. PLoS One 8: e72415.   DOI
17 Krishnan A, Kumaraswamy GK, Vinyard DJ, Gu H, Ananyev G, Posewitz MC, Dismukes GC. 2015. Metabolic and photosynthetic consequences of blocking starch biosynthesis in the green alga Chlamydomonas reinhardtii sta6 mutant. Plant J. 81: 947-960.   DOI
18 Lamers PP, Janssen M, De Vos RCH, Bino RJ, Wijffels RH. 2012. Carotenoid and fatty acid metabolism in nitrogenstarved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162: 21-27.   DOI
19 Lee S -Y, Kim S-H, Hyun S -H, Suh HW, Hong S-J, Cho B-K, et al. 2014. Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem. 49: 996-1004.   DOI
20 Li T, Gargouri M, Feng J, Park JJ, Gao D, Miao C, et al. 2015. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour. Technol. 180: 250-257.   DOI
21 Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
22 Li X, Moellering ER, Liu B, Johny C, Fedewa M, Sears BB, et al. 2012. A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24: 4670-4686.   DOI
23 Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12: 387-391.   DOI
24 Li Y, Han D, Hu G, Sommerfeld M, Hu Q. 2010. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 107: 258-268.   DOI
25 Liu B, Benning C. 2013. Lipid metabolism in microalgae distinguishes itself. Curr. Opin. Biotechnol. 24: 300-309.   DOI
26 Posewitz MC, Smolinski S, Kanakagiri S, Melis A, Seibert M, Ghirardi ML. 2010. Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16: 2151-2163.   DOI
27 Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H. 1998. Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol. 116: 1239-1248.   DOI
28 Rodolfi L, Chitin Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR. 2008. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 102: 100-112.   DOI
29 Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675.   DOI
30 Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol. 21: 277-286.   DOI
31 Shin HS, Hong S-J, Kim H, Yoo C, Lee H, Choi H-K, et al. 2015. Elucidation of the growth delimitation of Dunaliella tertiolecta under nitrogen stress by integrating transcriptome and peptidome analysis. Bioresour. Techol. 194: 57-66.   DOI
32 Siaut M, Cuiné S, Cagnon C, Fessler B, Nguyen M, Carrier P, et al. 2011. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7.   DOI
33 Spolore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.   DOI
34 Tafreshi AH, Shariati M. 2009. Dunaliella biotechnology: methods and applications. J. Appl. Microbiol. 107: 14-35.   DOI
35 Tang H, Abunasser N, Garcia MED, Chen M, Ng KYS, Salley OS. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88: 3324-3330.   DOI
36 Thaipratum R, Melis A, Svasti J, Yokthongwattana K. 2009. Analysis of non-photochemical energy dissipating processes in wild type Dunaliella salina (green algae) and in zea1, a mutant constitutively accumulating zeaxanthin. J. Plant Res. 122: 465-476.   DOI
37 Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. USA 110: 19748-19753.   DOI
38 Vorst P, Baard RL, Mur LR, Koprthals HJ, Van Den Ende H. 1994. Effect of growth arrest on carotene accumulation and photosynthesis in Dunaliella. Microbiology 140: 1411-1417.   DOI
39 Uriarte I, Farías A, Hawkins AJS, Bayne BL. 1993. Cell characteristics and biochemical composition of Dunaliella primolecta Butcher conditioned at different concentrations of dissolved nitrogen. J. Appl. Phycol. 5: 447-453.   DOI
40 Vonlanthen S, Dauvillée D, Purton S. 2015. Evaluation of novel starch-deficient mutants of Chlorella sorokiniana for hyper-accumulation of lipids. Algal Res. 12: 109-118.   DOI
41 Zabawinski C, Van Den Koornhuyse N, D´Hulst C, Schlichting R, Giersch C, Delrue B, et al. 2001. Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J. Bacteriol. 183: 1069-1077.   DOI
42 Zhang Y-M, Chen H, He C-L, Wang Q. 2013. Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8: e69225.   DOI
43 Zhu S, Huang W, Wang Z, Xu J, Yuan Z. 2014. Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour. Technol. 152: 292-298.   DOI