• Title/Summary/Keyword: Stable Response

Search Result 1,158, Processing Time 0.044 seconds

Sufficient and Necessary Condition for Monotone Nondecreasing Step Response of Second-Order System

  • Kwon, Byung-Moon;Kwon, Oh-Kyu;Kim, Dae-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.1-96
    • /
    • 2001
  • This paper is shown that the impulse and unit step response of second-order system can be computed by the analytic methods using Laplace transform. Also, the transient response specifications are explicitly formulated by the peak undershoot and maximum overshoot of the step response. Three different second-order systems are investigated: prototype system, system with LHP(left half plane) real zero, and system with RHP(right half plane) real zero. Based on these analytic results, this paper presents the sufficient and necessary conditions for the second-order linear SISO(single-input/single-output) stable system to have the nonovershooting or monotone nondecreasing step response.

  • PDF

Predictive current control for fast response of generator excitation system (발전기 여자 시스템 속응성 개선을 위한 예측제어 전류 기법)

  • Lee, B.K.;Moon, S.P.;Choi, J.H.;Rhew, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.416-418
    • /
    • 1997
  • Stable power source and fast control response are important for the generator excitation system. To stabilize the control of excitation circuit the PI controller for excitation current has been used. But the response of the system with this conventional control technique is very poor, especially in transient response with a predictive current control, the response of the excitation system can be improved. In this study, it is verified by the PSIM simulation.

  • PDF

Micro-Computer Simulation Programs for a Pneumatic Control System (공압구동장치 해석을 위한 마이크로 컴퓨터 시뮬레이션에 관한 연구)

  • 주해호;서재경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.845-851
    • /
    • 1986
  • This Paper presents micro-computer simulation programs for a pneumatic control system. The simulation programs have been written in BASIC language which is suitable for 6502CPU with 48KB memory and consist of 11 programs which describe the time response and frequency response of the pneumatic actuation system. This simulation package is stored in 51/4 inch floppy diskette. The user requires no simulation expertise on the part of designer. As the result of using this simulation programs for the pneumatic control system with stabilizing tank, it has shown that the response time of the system using air as working medium takes more time to be settled but relatively stable rather than the system using helium.

Robust Control via Peak Control of Sensitivity Function (민감도 함수의 최대치 제어를 통한 강인제어)

  • Suh, Sang-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1071-1075
    • /
    • 2009
  • This article describes a robust control method by using peak control of a sensitivity function in the state-feedback control systems. This method apparently reduces the peak, and as a result makes closed loop systems more stable. The designed closed loop systems also make the response to an external step disturbance more fast with a lower undershoot. At the conclusion, it is verified that the proposed method enhances robust stability and robust performance to parametric uncertainties through $\mu$-plot.

Stabilization control of inverted Ball-Beam system by the linear controller (볼-막대 시스템의 안정화를 위한 선형제어에 관한 연구)

  • 신기수;박래방;권순재
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.76-79
    • /
    • 1999
  • A study on simulation using Matlab shows the dynamic condition of a beam on feed-back with encorder. A controller for rapid response interpreted the stability on simulation with pole-placement technique. The effect of response was considered feed-back gain. The result of feed-back is described that various feed-back coefficient shows stable controll systems. It would be expected each result according to controllers.

  • PDF

Mechanically Immobilized Copper Hexacyanoferrate Modified Electrode for Electrocatalysis Amperometric Determination of Glutathione

  • D. Davi Shankaran;S. Sriman Narayanan
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.816-820
    • /
    • 2001
  • A new copper hexacyanoferrate modified electrode was constructed by mechanical immobilization. The modified electrode was characterised by cyclic voltammetric experiments. Electrocatalytic oxidation of glutathione was effective at the modified electrode at a significantly reduced overpotential and at broader pH range. The modified electrode shows a stable and linear response in the concentration range of 9 ${\times}$10-5 to 9.9 ${\times}$10-4M with a correlation coefficient of 0.9995. The modified electrode exhibits excellent stability, reproducibility and rapid response and can be used in flow injection analysis for the determination of glutathione.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

A response matrix method for the refined Analytic Function Expansion Nodal (AFEN) method in the two-dimensional hexagonal geometry and its numerical performance

  • Noh, Jae Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2422-2430
    • /
    • 2020
  • In order to improve calculational efficiency of the CAPP code in the analysis of the hexagonal reactor core, we have tried to implement a refined AFEN method with transverse gradient basis functions and interface flux moments in the hexagonal geometry. The numerical scheme for the refined AFEN method adopted here is the response matrix method that uses the interface partial currents as nodal unknowns instead of the interface fluxes used in the original AFEN method. Since the response matrix method is single-node based, it has good properties such as good calculational efficiency and parallel computing affinity. Because a refined AFEN method equivalent nonlinear FDM response matrix method tried first could not provide a numerically stable solution, a direct formulation of the refined AFEN response matrix were developed. To show the numerical performance of this response matrix method against the original AFEN method, the numerical error analyses were performed for several benchmark problems including the VVER-440 LWR benchmark problem and the MHTGR-350 HTGR benchmark problem. The results showed a more than three times speedup in computing time for the LWR and HTGR benchmark problems due to good convergence and excellent calculational efficiency of the refined AFEN response matrix method.

Improvement of Tansient Response Characteristics of a Position Control Hydraulic Servosystem Using Observer (II) -Experimental Results Using Analog Observer- (觀測器를 利용한 位置制御 油壓 서보 시스템의 過度應答 特性 改善 (II) -애널로그 관측기를 이용한 실험결과-)

  • 이교일;조승호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.215-220
    • /
    • 1988
  • The oscillatory hydraulic servosystem and the stable hydraulic servosystem under proportional control were feedback-controlled respectively using the estimated states of the observer. The observer was constructed in the analog computer and then it was interfaced with the real hydraulic servosystem to excute the experiment. As a result of experiment, the system that had been stable under proportional control responded more rapidly than before and the system that had shown oscillatory phenomenon under proportional control became stable with the same maximum acceleration and velocity that it had started under proportional control.

Stability Analysis of Mathieu Equation by Floquet Theory and Perturbation Method (Floquet 이론과 섭동법에 의한 Mathieu Equation의 안정성해석)

  • Park, Chan Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.8
    • /
    • pp.734-741
    • /
    • 2013
  • In contrast of external excitations, parametric excitations can produce a large response when the excitation frequency is away from the linear natural frequencies. The Mathieu equation is the simplest differential equation with periodic coefficients, which lead to the parametric excitation. The Mathieu equation may have the unbounded solutions. This work conducted the stability analysis for the Mathieu equation, using Floquet theory and numerical method. Using Lindstedt's perturbation method, harmonic solutions of the Mathieu equation and transition curves separating stable from unstable motions were obtained. Using Floquet theory with numerical method, stable and unstable regions were calculated. The numerical method had the same transition curves as the perturbation method. Increased stable regions due to the inclusion of damping were calculated.