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a b s t r a c t

In order to improve calculational efficiency of the CAPP code in the analysis of the hexagonal reactor core,
we have tried to implement a refined AFEN method with transverse gradient basis functions and
interface flux moments in the hexagonal geometry. The numerical scheme for the refined AFEN method
adopted here is the response matrix method that uses the interface partial currents as nodal unknowns
instead of the interface fluxes used in the original AFEN method. Since the response matrix method is
single-node based, it has good properties such as good calculational efficiency and parallel computing
affinity. Because a refined AFEN method equivalent nonlinear FDM response matrix method tried first
could not provide a numerically stable solution, a direct formulation of the refined AFEN response matrix
were developed. To show the numerical performance of this response matrix method against the original
AFEN method, the numerical error analyses were performed for several benchmark problems including
the VVER-440 LWR benchmark problem and the MHTGR-350 HTGR benchmark problem. The results
showed a more than three times speedup in computing time for the LWR and HTGR benchmark prob-
lems due to good convergence and excellent calculational efficiency of the refined AFEN response matrix
method.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. INTRODUCTION

CAPP [1] is a computer code that the Korea Atomic Energy
Research Institute (KAERI) has developed for the neutronic analysis
of the High Temperature Gas-cooled Reactor (HTGR) core, which
solves the neutron diffusion equation by the Finite ElementMethod
(FEM) with general triangular prismatic finite elements. With high
finite element order options such as quadratic or incomplete
quadratic ones, CAPP has proven to be able to analyze the HTGR
core accurately through its application to numerous practical
design works of HTGR. However, one of its few flaws is slow
calculation time, so that it takes several hours to analyze a deple-
tion cycle of a three-dimensional HTGR core even on a multi-nodes
parallel computing cluster.

A nodal method based on the Analytic Function Expansion
Nodal (AFEN) method [2e6] in the hexagonal geometry has been
implemented into CAPP in order to improve the computational
efficiency of its high order FEM. The focus of the KAERI research and
by Elsevier Korea LLC. This is an
development efforts on only hexagonal prismatic HTGRs can make
CAPP free from FEM adopted due to its flexibility in geometry
processing. The AFEN version applied here is the refined AFEN
method introduced in Refs. [5]. In this method, refinement is ach-
ieved by adding the analytical basis functions combined with the
transverse-direction linear functions into the intranodal flux
expansion. The flux moments that are defined by the weighted
average fluxes at the interface are used as nodal unknowns corre-
sponding to the added basis functions. Among the weighting
functions proposed in the reference, the step function in the di-
rection parallel to the interface is used as a weighting function in
this paper. On the other hand, the corner point fluxes are no longer
used as nodal unknowns, since it is expected that sufficient accu-
racy can be achieved even without them. According to Ref. [5], the
refined AFEN method even without corner point fluxes provides
much better accuracy than the original AFEN method with corner
point fluxes [2].

Recalling that our goal is to improve the computational effi-
ciency of the CAPP, it is of interest in this paper to find an efficient
numerical scheme for the refined AFEN method. As is generally
known, numerical schemes based on the response matrix method
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jmnoh@kaeri.re.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2020.04.018&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2020.04.018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2020.04.018
https://doi.org/10.1016/j.net.2020.04.018


Fig. 1. Three coordinate systems and six interfaces.
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can be considered more numerically efficient than the original
refined AFEN method in Ref. [5]. (This general perception was also
supported by the results of this paper.) The response matrix
method uses the interface partial currents as nodal unknowns
instead of the interface fluxes used in the original refined AFEN
method. The response matrix method updates the outgoing partial
currents of each node at each inner iteration step by imposing the
incoming partial current boundary conditions on the interfaces of
the node. Therefore, there is an advantage that the domain where
the nodal unknowns and their coefficients matrixes are calculated
is confined within the node independently of its neighbor nodes. In
keeping with our goal of shortening the calculation time, the
property that the response matrix calculation is limited to a single
node is very favorable for parallel computation combined with the
Red-Green-Blue (RGB) segmentation of calculational nodes
described in Section 2.4. A triangular nodal response matrix
formulation for hexagonal core applications can be found in Ref. [7].

Noting that the Finite Difference Method (FDM) nonlinear
iteration scheme [8] is widely being used as an acceleration
scheme for high-order neutron diffusion and transport methods,
first of all, the nonlinear FDM response matrix method equivalent
to the refined AFEN method was tried to reduce computational
time. This scheme adopts two non-linear correction factors for
each interface, as in Refs. [9]. However, unlike the reference, which
solves a two-node problem, here we solve a single-node problem
and determine the interface non-linear correction factors. This can
be justified by the fact that the single-node based scheme fits
more to the concept of the response matrix which can be defined
as the response (i.e., outgoing partial currents) of a single node to
the input (i.e., incoming partial currents). Once again, the
emphasis would be to bring all of the calculations to a single-node
basis, leading to many advantages in derivation of formulas,
computer implementation including parallel computation, and
maintenance.

Unlike the hopeful expectation caused by a big success of the
nonlinear FDM as an acceleration technique, the refined AFEN
method equivalent FDM response matrix method tried here could
not provide a numerically stable solution [10]. Several attempts,
including recommended in Refs. [10], to improve the numerical
stability have been made but they were still in vain. The FDM
response matrix methods would not be successful at least if they
are fundamentally based on the single node AFEN solution. The
numerical stability degradation is reported in Ref. [11] when
applying a nonlinear FDM response matrix in a rectangular ge-
ometry in a manner quite similar to this paper.

There is a general reasoning that the stability is increased by
utilizing two-node problems instead of single-node problems,
because a two-node problem more quickly reflects the coupling
effects between adjacent nodes than a single-node problem.
However, we do not want to give up themany advantages of single-
node based computing. Therefore, to assure numerical stability, we
directly formulate the response matrix of the refined AFEN with
interface partial currents and their moments in this paper, leaving a
work developing a two-node based nonlinear FDM responsematrix
as a future work [10]. The numerical error analysis is provided in
this paper to show the numerical performance of this method.

This paper presents the results of a two-dimensional reactor
core analysis using the proposed method. The main numerical
characteristics will remain almost the same even if it is expanded to
three dimensions.

2. Methodology

Deriving the refined AFEN response matrix which expresses the
outgoing interface partial currents into the incoming interface
partial currents has two steps for convenience. In the first step, the
AFEN single node is solved to obtain the relationship between the
interface fluxes and the interface currents. In the second step, the
response matrix is derived by replacing the interface fluxes and
interface currents in this relationship with the incoming and out-
going interface partial currents.

The first step is identical to that described in Ref. [5], but it is
repeated almost as it is in the reference for the sake of readability of
this paper.
2.1. Refined AFEN solution in single-node [5]

2.1.1. Intranodal flux expansion
Solving the single node problem with interface current and

current moment boundary conditions by the refined AFEN method
starts from expending the intranodal flux distribution into the
analytic basis functions with and without transverse-direction
linear functions:

fðx; yÞ ¼ 4ðx; yÞ þ4ðu; vÞ þ4ðp; qÞ (1)

where

4ðx; yÞ ¼ sinh
� ffiffiffiffiffi

L
p

x
�
ðAxe þ AxoyÞ þ cosh

� ffiffiffiffiffi
L

p
x
�
ðBxe þ BxoyÞ

(2)

L¼D�1S (3)

and D and S are the diffusion coefficient and cross-section matrix,
respectively and A's and B's are expansion coefficients. (x,y), (u,v)
and (p,q) are the three coordinates in Fig. 1 introduced for conve-
nience. And subscript e or omeans an even or odd function term in
the y direction, respectively.

Note that this flux expansion has twelve terms with one coef-
ficient each and all of them completely satisfy the diffusion equa-
tion for the node. Of course, both the coefficients and the basis
functions of this expansion are vectors and square matrices with
the number of energy groups as its order. However, thanks to the
matrix function theory, they can be treated like scalar as long as
other matrix functions are not involved except the functions of L
[12,13].

The average flux of the node is defined from this flux expansion
as follows:
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The interface fluxes and the flux moments e.g., at the x1 inter-
face are respectively defined by
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Here, w(y) is the weighting function. Between the two types of
weighting functions proposed in Ref. [5], i.e., the step function and
the linear function, the step function is used in this paper.

wðyÞ¼
�þ1 when y � 0

�1 when y<0 (7)

If the step function is used, it is equivalent to the case where an
interface is cut in half and the continuous condition of flux and
current is applied for each half of the interface.

Strictly speaking, when applying the equivalence theory [14,15],
the interface fluxes and moments in Eqs. (5) and (6) are homoge-
neous ones. They are multiplied by the discontinuity factors to yield
the heterogeneous ones. However, for simplicity of derivation, we
ignore the discontinuity factors at this moment. In implementing,
of course, the discontinuity factors are involved.

Further, the interface current and the current moment at the
example interface are consistently defined by
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Here, superscript “in” means that the sign of the interface cur-
rent is positive when it is in the direction of entry into the node.
2.1.2. AFEN solution of single-node problem
Solving the single node problem as shown in Fig. 1 to obtain the

intranodal flux distributionmeans expressing twelve coefficients of
the flux expansion Eq. (1) in terms of six interface currents and six
interface current moments. This problem seems to involve invers-
ing a 12 � 12 matrix system. However, the decoupling trans-
formation of Reference [5] simplifies it to a problem of inversing
several smaller matrixes.

This transformation transforms both the flux expansion co-
efficients and the nodal unknowns twice. First, the parity trans-
formation transforms the nodal unknowns into their even and odd
forms e.g., in the x-direction:
uxe ¼ fx1 þ fx0
2

� �f; uxo ¼ fx1 �fx0
2

(10)

sxe ¼ jx1 þ jx0
2

; sxo ¼ jx1 � jx0
2

(11)

Applying symmetric thinking, the even and the odd forms of the
interface currents and current moments are defined as follows:

hin
xe ¼

Jinx1 þ Jinx0
2

; hin
xo ¼ Jinx1 � Jinx0

2
(12)

2inxe ¼
jinx1 þ jinx0

2
; 2inxo ¼ jinx1 � jinx0

2
(13)

Now, the direction transformation transforms the coefficients of
the expansion flux and the nodal unknowns further as shown
below.

Cqs ¼
Cxs þ Cus þ Cps

3
; Cεs ¼ 2Cxs � Cus � Cps

3
; Ccs ¼ Cus � Cps

3
(14)

uqs ¼
uxs þuus þups

3
; uεs ¼ 2uxs �uus �ups

3
;

ucs ¼ uus �ups

3

(15)

sqs ¼
sxs þ sus þ sps

3
; sεs ¼ 2sxs � sus � sps

3
;

scs ¼ sus � sps

3

(16)

where coefficient letter C is A or B and parity index s is e or o. Of
course, the same transformation is applied to the currents and
current moments.

On theway to expressing the transformed unknowns in terms of
the transformed expansion coefficients, we can realize that the
original 12 � 12 matrix equation is decoupled with four 2 � 2
matrix equations and four scalar equations. In particular, two of the
four 2 � 2 matrixes are in the relationship of similarity trans-
formation to the other two. Therefore, solving a single-node
problem simply involves finding the inverses of two 2 � 2 ma-
trixes and four scalars. For example, one of two 2 � 2 matrix sys-
tems is given by

�
uco
sεe

�
¼ T

�
Ace
Bεo

�
and

2
4hin

co

2in
εe

3
5 ¼ DM

�
Ace
Bεo

�
(17)

where M and T are 2 � 2 matrixes with elements of matrix
functions.

By eliminating the coefficient vector, the interface fluxes and
flux moments can be expressed in terms of the interface currents
and current moments e.g., as follows:

�
uco
sεe

�
¼ TM�1D�1

2
4hin

co

2in
εe

3
5 (18)

where TM�1 is also a matrix function system of L. It is noted that
any functions of a given matrix or their operations can be evaluated
relatively easily, e.g., by diagonalizing the matrix using its eigen-
system. This good property has been well utilized so far. Howev-
er, it will be soon realized that such good luck is no longer with the
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final response matrix equation.
As mentioned in Refs. [5], the inverse ofM in Eq. (18) is singular

when one of the eigenvalues of the cross-section matrix is very
small. This singularity is removed in the manner described in the
reference.

2.2. Refined AFEN response matrix

The response matrix that computes the output, which are the
outgoing interface partial currents going out of a node, from the
input, which are the incoming interface partial currents coming
into the node, is derived by noting that the interface partial cur-
rents at the interface s in the direction d are expressed in terms of
the interface fluxes of Eqs. (5) and (6) and the interface currents of
Eqs. (8) and (9).

Pf
ds ¼

Jfds
2

þ fds

4
(19)

pf
ds ¼

jfds
2

þ jds
4

(20)

where flow direction index f is in or out, direction index d is x, u, or
p, and interface index s is 0 or 1. Then, the interface fluxes and
currents are equivalently given by

Jinds ¼ Pin
ds � Pout

ds ; fds ¼ 2
�
Pin
ds þ Pout

ds

�
(21)

jinds ¼ pin
ds � pout

ds ; jds ¼ 2
�
pin
ds þ pout

ds

�
(22)

Since the relationships (19) and (20) are linear and the parity
and direction transformations explained in the previous section are
also linear, the partial currents and moments shall have their
transformed forms with respect to the both transformations and
these forms shall have the relationships corresponding to those of
Eqs. (21) and (22), as shown e.g., for the transformed unknowns in
Eq. (17).

hin
co ¼ Zinco � Zoutco ; uco ¼ 2

�
Zinco þ Zoutco

�
(23)

2in
εe ¼ zin

εe � zout
εe ; sεe ¼ 2

�
zin
εe þ zout

εe

�
(24)

Substituting these relationships into Eq. (18) and solving for the
transformed outgoing partial currents, we finally obtain the
response matrix in the transformed system as follows,

"
Zoutco

zout
εe

#
¼ R

2
4Zinco
zin
εe

3
5 (25)

where R¼ - (2Iþ TM�1D�1) �1 (2Ie TM�1D�1), which is a response
matrix we finally want to get. Unfortunately, the matrix,
2I þ TM�1D�1 is not a matrix function of L anymore because it
contains the diffusion coefficient matrix D. As previously con-
cerned, the matrix function attribute is no longer valid. Therefore,
the inversion of this matrix becomes a full inversion of a 2G � 2G
matrix.

Note that the interface partial currents and moments can be
easily transformed into their linearly transformed partners and vice
versa. Once the interface incoming partial currents are given for a
node, the interface outgoing partial currents and moments can be
calculated by the response matrix, e.g., Eq. (25). Then, these out-
going partial currents become the partial currents incoming into its
neighboring nodes. This provides an iterative process to solve the
global core eigenvalue problem through the well-known inner-
outer iteration. Generally, the number of inner iterations per outer
iteration is an issue in this type of iteration. As in many other nodal
methods, we used one for this value throughout this paper. This
method with one inner iteration per outer iteration, called the
Equipoise method, “is more economical than the standard method
without any sophisticated acceleration technique for certain
problems” (p.133 in Ref. [16]), for example, benchmark problems in
this paper.

The response matrix equation, e.g., Eq. (25) is an efficient
equation. It calculates the six outgoing interface partial currents of
each node at once at each inner iteration step by imposing the
boundary conditions of six incoming partial currents. Considering
that one interface is shared by two nodes, it can be noted that three
interface unknowns are equivalently calculated per each single
node calculation. On the other hand, the original refined AFEN
method [5] determines only one interface flux by solving a two-
node problem with current continuity condition across the inter-
face between the two nodes. Therefore, assuming the same number
of total inner iterations is required to achieve the same accuracy,
the response matrix method becomes three times more efficient
than the original refined AFEN method theoretically.

2.3. Numerical performance analysis

The numerical performance of the refined AFEN response ma-
trix in the hexagonal geometry is shown by a numerical error
analysis in a general textbook on numerical methods [16].

The iterative method applied to solve the AFEN response matrix
in the hexagonal geometry by the power method is given by

sðtþ1Þ ¼ 1
kðtÞ

A sðtÞ (26)

kðtþ1Þ ¼ k A sðtÞ k
k sðtÞ k ¼ kðtÞ

k sðtþ1Þ k
k sðtÞ k (27)

where sð0Þ ¼ s0; kð0Þ ¼ k0, and t ¼ 0;1;… s is an 1� n iteration
vector and A is the n� n corresponding iteration matrix. The iter-
ative matrix depends not only on the problem itself, including
boundary conditions, but also on the discretization method (e.g.,
original AFEN vs. AFEN response matrix) or the computational
sweeping order. The nodal neutron source vector can be the iter-
ation vector in this discussion and the sum of absolute values of the
elements of the source vector can serve as the norm for the itera-
tion vector in Eq. (27). Assume that A is a complete matrix and that
it has a single dominant eigenvalue and a second dominant
eigenvalue. Let l1;…; ln

	jl1j> jl2j>
��lj�� for all j



denote the ei-

genvalues of A and u1;…;un the corresponding eigenvectors,
which form a complete basis set. Writing the initial vector s0 in
terms of these basis vectors

s0 ¼ c1u1 þ $$$þ cnun (28)

the solution of the iteration system Eq. (26) takes the explicit form

sðtÞ ¼ TðtÞ
 
c1u1 þ c2

�
l2
l1

�t

u2$$$þ cn

�
ln
l1

�t

un

!
(29)

where

TðtÞ ¼ lt1Qt�1
i¼0kðiÞ

¼
Yt�1

i¼0

l1
kðiÞ

with kð0Þ ¼ k0 (30)



Fig. 2. RGB sweeping scheme.
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It is certain that the iteration system Eq. (26) will converge to
the multiple of the dominant eigenvector of the iteration matrix A
as the iteration progresses because all the terms after the second
term of Eq. (29) will gradually vanish.

sðtÞzTðtÞc1u1≡s∞ for all t[0 (31)

kðtÞ will also converge to the dominant eigenvalue l1.

kðtÞ ¼ kðt�1Þ k sðtÞ k
k sðt�1Þ kzkðt�1Þ

���TðtÞ������Tðt�1Þ
��� ¼ l1≡k∞ for all t[0

(32)

In fact, TðtÞ must converge in order for the solution Eq. (26) to
converge. This is proven by Eqs. (30) and (32) because there exists a
finite number that confines TðtÞ for all t[0.

Equation (29) implies that the rate of convergence of the itera-
tion system is governed by the ratio jl2 =l1j. This ratio is called the
convergence rate rather than the dominance ratio here to avoid
confusion with its other possible definitions elsewhere. We define
the error vector in order to derive an expression for the conver-
gence rate.

eðtÞ ¼ sðtÞ � s∞ ¼ TðtÞ
 
c2

�
l2
l1

�t

u2$$$þ cn

�
ln
l1

�t

un

!
(33)

The first term, as is the argument above, will eventually domi-
nate the whole error vector.

eðtÞzTðtÞc2
�
l2
l1

�t

u2 for all t[0 (34)

Finally, an iterative estimator of the convergence rate that serves
as an indicator of the numerical performance of the iteration sys-
tem can be obtained:

k eðtÞ k
k eðt�1Þ kz

l2
l1

for all t[0 (35)

In order to estimate the convergence rate numerically, s∞ is
approximated by iteration until sðtÞ converges within almost the
truncation error level. Then, the iteration is repeated from the
beginning to compute the convergence rate using Eq. (35).

Note that the inner iteration determines the neutron flux dis-
tribution for a fixed fission source distribution and that the two
refined AFEN methods are mathematically equivalent. Therefore,
an outer iteration for the two methods will result in the equivalent
flux distribution if the infinite number of inner iterations is per-
formed. Of course, we assumed here that the boundary condition
and the initial guess for nodal unknowns are equivalent. As a result,
the convergence rate or the number of outer iterations to achieve a
certain level of accuracy becomes the same. Therefore, the perfor-
mance of both methods depends on the performance of the inner
iteration, that is, the spectral radius of their inner iteration matrix.

If a certain insufficient number of inner iterations per outer
iteration is performed (e.g., once in this paper), the outer iteration
matrix for the two methods is different and so is their convergence
rate or the number of outer iterations. In this case, the lower the
spectral radius of the inner iteration matrix, the lower the
convergence rate and the less the number of outer iterations.
Therefore, the convergence rate calculated by Eq. (35) becomes not
only an indicator of the spectral radius of the inner iteration matrix
but also an indicator of the overall numerical performance.
2.4. RGB Sweeping Scheme

As described in INTRODUCTION, the response matrix calcula-
tions are performed only within a single node regardless of
neighboring nodes. Therefore, these calculations are carried out by
sequentially moving from one node to another. In this case, it is
advantageous to sweep the nodes by dividing them into Red (R),
Green (G), and Blue (B) nodes as shown in Fig. 2, like checkerboard
sweeping for a rectangular node core.

This kind of iteration schemes is good in convergence and sta-
bility due to geometrical balance. It further enhances the advantage
in parallel-computing that the response matrix method has
already.

In addition, the memory required is saved by storing inputs of
the response matrix calculation, i.e., incoming partial currents and
outputs, i.e., outgoing partial currents in the same storage. This is
because the outgoing partial currents resulting from previous two
other color types of node calculations automatically become
incoming partial currents for the third kind of node calculations.

3. Numerical results and discussion

The numerical performance of the refined AFEN response ma-
trix method in the hexagonal geometry was verified against several
benchmark problems including small and large light water reactor
(LWR) and high temperature gas-cooled reactor (HTGR) cores. Note
that both LWRs and HTGRs are thermal reactors in which nodal
methods can be widely used due to their advantages in dealing the
steep local gradient of the thermal flux across the material
discontinuity.

Since the initial objective of implementing the refined AFEN
method to CAPP is to reduce the computation time, the verification
here focuses primarily on showing computational efficiency rather
than accuracy. The excellent accuracy of the refined AFEN method
in the reactor core analysis has already shown in Refs. [5]. The
numerical error analysis is performed to quantify the computa-
tional efficiency.

3.1. Mini core problem

A mini core problem in Fig. 3 against which the refined AFEN
response matrix method developed in this study was first verified
was derived from VVER-440 benchmark problem [5,17]. This tiny
core has seven fuel assemblies in the first and second rings of the
hexagonal core, which are surrounded by twelve non-power
generating control assemblies in the third ring.

The numerical error analysis was performed with two energy
groups in a sixth core to show the numerical performance of the
refined AFEN response matrix method. The two-group assembly
homogenized cross-sections used in this analysis are directly
quoted from Reference [17].

The results of the refined AFEN response matrix method were



Fig. 3. Mini core problem (1/6 core).

Fig. 4. Convergence pattern (mini core).
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compared with those of the original refined AFEN method and the
FDM response matrix method without nonlinear correction factors.
Fig. 4 shows a pattern in which the node-wise neutron fission
source vector converges as the iteration progresses. Each of the
three solid lines in this figure is the logarithmic scale normalized
norm of the error vector of the source vector given in Eq. (33) (See
the left-y axis.) and each of dotted lines is the convergence rate
estimated by equation (35) (See the right-y axis). Red, green and
blue colors on both solid and dotted lines indicate the quantity for
the refined AFEN response matrix method, the original refined
AFEN method and the FDM response matrix method, respectively.
This figure clearly illustrates the excellence of the refined AFEN
response matrix method in numerical performance beyond com-
parison with the other two methods. This method with a much
lower convergence rate converges more than twice as fast as the
other two methods. This method reaches an asymptotic conver-
gence state after only a few initial iterations, which is characterized
by a flat convergence rate and a linearly decreasing error in loga-
rithmic scale. In this state, the error is reduced by the power of the
convergence rate as each iteration progresses. Therefore, an accel-
eration by extrapolation of the iterative vector becomes possible.

Some numerical performance related parameters calculated by
the three methods are compared in Table 1. The k-effective differ-
ence between the two refined AFEN methods is purely due to the
different boundary conditions because the two methods are
mathematically equivalent. Therefore, this difference does not
mean that one is better in accuracy than the other but it is slightly
larger because a small node size makes this problem sensitive to
Table 1
Numerical performance parameters (mini core).

k-eff Convergence Rate Expect

AFEN RM 0.778735 0.45164 20
AFEN 0.776642 0.69846 45
FDM RM 0.865688 0.81307 78
the boundary condition. The boundary condition applied is the zero
incoming partial current for the two response matrix methods and
the zero flux for the conventional form of the refined AFENmethod.
This simply because the boundary condition for each nodal method
corresponds to the type of its nodal unknowns.

The effect of boundary conditions on numerical performance of
each nodal method can be presumed as a change in the iterative
matrix caused by the boundary condition that does not correspond
to the nodal method. An example taken here is the iterative matrix
difference between the conventional AFEN method with its corre-
sponding zero flux boundary condition and that with its non-
corresponding zero incoming partial current boundary condition.
For the former, it is certain that the row of the iterative matrix
corresponding to an interface flux on the boundary, which is one of
the unknowns of this nodal method, is diagonal. However, the row
of iterative matrix for the latter will represent an expression that
expresses the incoming partial current at the boundary interface,
which is not an unknown, into terms of the interface fluxes around
the boundary, which are unknowns. This row is certainly non-
diagonal. This will hurt the diagonal dominance of the iterative
matrix (jaiij �

P
jsi

��aij��; aij2A in Eq. (26)) and degrade the numerical

performance of the AFEN method with the zero-incoming partial
current boundary condition. However, due to the small number of
boundary interfaces and the small physical differences between
zero flux and zero incoming partial current, the effect is signifi-
cantly limited. This discussion symmetrically applies to the
response matrix method case, where the zero-flux condition shows
slightly poorer performance than the zero incoming partial current
condition. For the three benchmark problems in this paper, the
refined AFEN method with the zero-incoming partial current
boundary condition increases the number of iterations needed to
achieve the 10�7 accuracy from 41, 1454, and 545 to 44, 1483, and
549, respectively. Of course, its converged fundamental mode so-
lutions were found to be equivalent to those of the refined AFEN
response matrix method with the same boundary condition.

The second column of the table is the convergence rate esti-
mated numerically, where the value for the refined AFEN response
method is the smallest. The third column is the number of itera-
tions expected to achieve a less than 10�7 accuracy in node-wise
sources if the source error decreases in an asymptotic manner as
described above. This is the value calculated by the following
equation:

�7=log10ðl2=l1Þ (36)

The next column is the number of iterations performed to
achieve the same accuracy in the actual calculation. Not only does
the refined AFEN response matrix method have the smallest
number of iterations, but it also has the smallest deviation between
the prediction and the actual value. This means it reaches the
asymptotic state very early, which is advantageous for acceleration
by asymptotic extrapolation. The last column is time consumed for
the calculation. This value is obtained by averaging three mea-
surements from a PC with Intel® Core™ i7-4930 K CPU using the
functions of the MS Visual Studio™ Chrono library. The refined
AFEN response matrix method is 2.5 times faster than the original
refined AFEN method. It is a little faster considering the number of
ed Iterations Actual Iterations Computing Time (msec)

20 389
41 944
51 293
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iterations, but slower considering the efficiency of the response
matrix aforementioned in the last paragraph of Section 2.2. This is
probably due to the fact that the size of the core and the number of
energy groups are so small that the proportion of auxiliary opera-
tions other than the iteration matrix related operations becomes
not small even within a single iteration.
3.2. VVER-440 problem

The refined AFEN response matrix method were further verified
against the VVER440 benchmark problem [5,17], which is a com-
mercial size LWR core simulating an old Soviets PWR. It consists of
342 fuel assemblies, 7 non-power generating control rod assem-
blies, and 72 surrounding reflector assemblies. Again, the assembly
homogenized cross-sections directly come from Reference [17].

The results of the numerical error analysis are shown in Fig. 5
and Table 2. All the components of the figure and the table have
a completely same meaning as described in the previous section.
Note that there exists the same boundary condition difference
among the three methods as described in the section.

The error vector of the refined AFEN response matrix method is
smaller than that of the FDM response matrix method at the early
stage of iteration. But eventually it gets caught up with the FDM
response matrix method near the 1,000th iteration (near 10�11

error). This is because, the refined AFEN response matrix method
has a very comparable but slightly larger convergence rate
compared with the FDM response matrix method. Nevertheless,
the FDM response matrix method is not judged to have a small
enough convergence rate to be able to accelerate the refined AFEN
response matrix method.

The deviation between the predicted and the actual number of
iterations widens as the problem size increases. Therefore, atten-
tion is required to accelerate calculation with asymptotic extrapo-
lation. An adequate under relaxation factor in extrapolation may be
desirable.

Comparing the refined AFEN response matrix method and the
original refined AFEN method is more exciting. Although the
refined AFEN response matrix method has a much smaller
convergence rate (The scale is how far from one.), it seems to be
inferior to the original refined AFEN method in terms of the error
Fig. 5. Convergence pattern (VVER-440).

Table 2
Numerical performance parameters (VVER-440).

k-eff Convergence Rate Expect

AFEN RM 1.009645 0.97672 684
AFEN 1.008632 0.99358 2501
FDM RM 1.018224 0.97583 659
size at the early stage of iteration. However, eventually, it requires
three times shorter computing time to achieve 10�7 accuracy.
Considering that it does not seem to be overwhelmingly faster
(3.4 times faster) than the number of iterations has reduced (3.2
times), the proportion of auxiliary operations is still too significant
to show the advantage of the calculational efficiency of the
response matrix.
3.3. MHTGR-350 problem

The MHTGR-350 problem [18] is a 350MWth hexagonal pris-
matic block type HTGR core with graphite moderator and helium
coolant. As shown in Fig. 6, it has an active core of 66 fuel blocks in
the fourth, fifth and sixth rings of the core, surrounded by graphite
reflectors with about three rings thick inward and outward. Due to
spectrum shift in the graphite-moderated reactor, the ten-energy
group system rather than the two-group system is used for the
analysis of the MHTGR-350 core. The ten-group cross-sections
directly cited from reference [18] are listed in Tables 3 and 4 for the
fuel blocks and the reflector block, respectively.

Fig. 7 and Table 5 illustrate the results of the numerical error
analysis. See also Section 3.1 for themeaning of the figure and table.

The k-effective value calculated for this problem by CAPP with
the cubic finite element option and the zero incoming current
boundary condition is 1.09346, which was used as a reference value
to verify the other finite element options [18]. This boundary con-
dition is consistent with the refined AFEN response matrix method.
Note that even the small difference of about 20 pcm between these
two consistent values does not mean which is more accurate.

The thickness of the reflector is increased compared with the
previous two problems even though the relative dimension
reduction in the graphite-moderated reactor is taken into account.
Therefore, the influence of the boundary condition is reduced, and
the k-effective value deviation between the two AFEN methods is
greatly reduced.

The results of the error analysis show that the convergence
patterns for the VVER-440 problem, such as the order of the three
methods in convergence speed driven by the convergence rate size,
remain the same for this problem. The error of the original refined
AFEN method is the smallest in the early iteration stage but even-
tually caught by the refined AFEN response matrix method. How-
ever, the big difference from the results of the error analysis of
VVER-440 is also shown: The convergence rate deviation be-
tween the two AFEN methods has greatly narrowed, which in turn
leads to a big reduction in the difference in the number of iterations
to achieve the 10�7 accuracy (from 3.2 times for VVER-440 to 1.2
times for MHTGR-350).

This should have meant less reduction in computing time but,
there is another reversal, so the reduction is almost the same as for
the VVER-440 problem (3.4 times faster). This is because the pro-
portion of the iterative matrix related operations increases signif-
icantly compared to that of the auxiliary operations as the number
of neutron energy groups increases from two to ten. The calcula-
tional efficiency of the refined AFEN response matrix method,
which is at least three times higher per iteration, becomes easier to
be realized for this problem.
ed Iterations Actual Iterations Computing Time (msec)

460 64
1454 216
463 31



Fig. 6. MHTGR-350 problem (1/6 core).

Fig. 7. Convergence pattern (MHTGR-350).
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The results showed again that the convergence rate of FDM is
not large enough to accelerate the AFEN response matrix method
and that a careful asymptotic acceleration is required with under-
relaxation factors.

4. Conclusion

In order to improve efficiency of the CAPP code in the analysis of
the hexagonal reactor cores, we have tried to implement a refined
AFEN method in the hexagonal geometry whose accuracy has been
well proven. In the nodal method, the corner point fluxes are no
longer nodal unknowns, but the flux moments that are defined by
the weighted average fluxes at the interface take the role of nodal
unknowns.

In addition, the numerical method for the refined AFEN method
adopted here is the response matrix method that uses the interface
partial currents as nodal unknowns instead of the interface fluxes
Table 3
Cross-sections of fuel block (MHTGR-350).

g D Sa nSf S1/g S2/g S3/g S4/

1 1.391 4.217E-4 3.969E-4
2 9.999E-1 5.398E-3 3.369E-3 4.594E-3
3 1.016 6.679E-3 2.411E-3 1.273E-2 6.26
4 1.003 5.149E-3 6.505E-3 2.704E-2
5 9.852E-1 9.273E-3 1.382E-2 1.752E-4 4.90
6 9.748E-1 1.122E-2 1.683E-2 1.906E-5 9.65
7 9.612E-1 1.140E-2 1.723E-2 7.494E-6 5.39
8 8.987E-1 1.583E-2 2.603E-2 4.066E-7 4.50
9 8.123E-1 2.378E-2 4.159E-2 2.970E-8 4.94
10 7.841E-1 3.955E-2 7.191E-2 8.94

The fission yield is 1.0 for g ¼ 1 and 0.0 for the other groups.

Table 4
Cross-sections of reflector block (MHTGR-350).

g D Sa S1/g S2/g S3/g S4/g

1 1.162 5.758E-6
2 9.097E-1 8.073E-6 6.922E-3
3 9.148E-1 2.931E-5 1.759E-2 4.319E-3
4 9.007E-1 5.942E-5 3.252E-2
5 8.963E-1 7.607E-5 2.142E-4 7.140E-2
6 8.920E-1 8.791E-5 2.335E-5 1.456E-2
7 8.789E-1 1.117E-4 9.185E-6 8.250E-3
8 8.290E-1 1.587E-4 4.979E-7 7.024E-4
9 7.599E-1 2.361E-4 3.708E-8 7.802E-5
10 7.269E-1 4.171E-4 1.420E-5
used in the original refined AFEN method. This method has an
advantage that all the iterative matrix calculations are single-node
based (independent from neighboring nodes), which is not only
very efficient but also very favorable for parallel computation.

Among response matrix methods, first tried is a two-factor
nonlinear FDM response matrix method that determines the
nonlinear correction factors by solving the single node problem by
the refined AFEN method. Unfortunately, the nonlinear FDM
response matrix method equivalent to the refined AFEN method
tried here could not provide a numerically stable solution. There-
fore, to assure numerical stability while maintaining the good at-
tributes of the response matrix method, we developed the direct
formulation of the refined AFEN response matrix with interface
partial currents and their moments in this paper.

To show the numerical performance of the refined AFEN
response matrix method against the original AFEN method, the
numerical error analyses were performed for several benchmark
problems including the two-group VVER-440 benchmark problem
representing the LWR core and the ten-group MHTGR-350
g S5/g S6/g S7/g S8/g S9/g S10/g

4E-3 5.949E-6 1.159E-5 7.806E-6 5.964E-7 2.271E-7 1.693E-7
4.092E-2 7.372E-3 1.274E-3 1.564E-4 5.056E-5 3.535E-5

8E-2 5.866E-2 1.213E-2 1.809E-3 5.994E-4 4.573E-4
5E-3 5.716E-2 2.907E-2 5.261E-3 2.024E-3 1.309E-3
3E-3 3.943E-2 9.280E-2 5.587E-2 2.005E-2 1.837E-2
3E-4 4.094E-3 1.199E-2 3.683E-2 5.400E-2 3.058E-2
8E-5 4.899E-4 1.629E-3 4.815E-3 1.848E-2 3.440E-2
9E-6 9.867E-5 2.812E-4 1.174E-3 2.828E-3 8.921E-3

S5/g S6/g S7/g S8/g S9/g S10/g

6.713E-6 1.355E-5 8.718E-6 6.723E-7 2.584E-7 1.944E-7
4.366E-2 8.290E-3 1.387E-3 1.759E-4 5.748E-5 4.058E-5

6.528E-2 1.325E-2 2.030E-3 6.819E-4 5.254E-4
6.708E-2 3.138E-2 5.928E-3 2.296E-3 1.502E-3
4.645E-2 1.061E-1 6.183E-2 2.275E-2 2.111E-2
4.908E-3 1.382E-2 4.316E-2 5.965E-2 3.468E-2
5.851E-4 1.896E-3 5.607E-3 2.124E-2 3.740E-2
1.180E-4 3.263E-4 1.369E-3 3.258E-3 9.883E-3



Table 5
Numerical performance parameters (MHTGR-350).

k-eff Convergence Rate Expected Iterations Actual Iterations Computing Time (msec)

AFEN RM 1.093230 0.97531 645 450 290
AFEN 1.092759 0.97936 773 545 971
FDM RM 1.050210 0.97248 578 413 55
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benchmark problem representing the HTGR core. Although the
difference varies depending on the problem, the refined AFEN
response matrix method consistently shows a smaller convergence
rate for the two benchmark problems. It also shows a more than
three times speedup in computing time for both problems. The
reason of the speedup is explained differently for each of them: that
for the VVER-440 problem is mainly due to a big cut in the number
of iterations caused by a far smaller convergence rate, on the other
hand, that for MHTGR-350 problem is mainly due to the advantage
of the computational efficiency of the response matrix method.

In addition, it was found from the results of the error analyses
that the convergence rate of this method is smaller than or at least
comparable to that of the FDM response matrix. This was presented
as a cause of poor performance of the nonlinear FDM schemes in
accelerating the refined AFEN response matrix method.

Finally, it can be concluded in short that the refined AFEN
response method significantly outperforms the conventional AFEN
method in analyzing the LWR cores and the HTGR cores.
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