• Title/Summary/Keyword: Stable Flow

Search Result 1,290, Processing Time 0.029 seconds

Studies on the flow stabilization around the turbine suction with utilizing the surface water overflow at small-hydraulic power plant (표층수의 월류를 통한 소수력빌전소 수차터빈측의 유동안정화 연구)

  • Lee, Sungmyung;Kim, Cheolhan;Yoo, Gunjong;Kim, Wonseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Flow with suction to water turbine must be in stable state at small hydraulic power plant. But because of water level fluctuation and water gate effect according to irregular supply of cooling water, it would happen to produce bubble and vortex and finally lead to problems in power-plant system. With utilizing the concept design of double size gate, surface water overflowed the overhead of gate for stable flow at suction. We developed the overflow condition and analyzed the design factor with existed one such as water level(overflow amount) and overhead of water gate(overflow figure). Flow test and CFD simulation say that flow have stable state around suction and 20% of wave reduction effect at surface layer after surface water overflow.

  • PDF

Computational Flow Analysis on the Flow Field Improvement of an Indoor RAC by LES (LES에 의한 RAC 실내기의 유동장 개선에 관한 전산유동해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.29-36
    • /
    • 2012
  • The computational flow analysis using LES technique was introduced to investigate the flow field improvement of an indoor RAC chassis consisting of a rear-guider, a stabilizer and a cross-flow fan. This unsteady three-dimensional numerical analysis was carried out by the commercial SC/Tetra software. The edge blocks were adopted in this study as a tool for the flow field improvement of an indoor RAC. In view of the results so far achieved, the edge blocks cause the center of an eccentric vortex to be stable along all length of a cross-flow fan, and then, the static pressure and the velocity vector show a stable distributions. In consequence, because the edge blocks eliminate a reverse flow near the edges, an exhausting flow becomes to be stable and uniform.

Characteristics of Bifurcation Phenomena of Symmetric Flow Pattern in a Plane Sudden-Expansion Flow (평면급확장유동내 대칭유동분기현상의 특성에 관한 연구)

  • Cho, Jin-Ho;Lee, Moon-J.;Kim, Ki-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.33-38
    • /
    • 2001
  • Bifurcation of unstable symmetric flow patterns to stable asymmetric ones in laminar sudden-expansion flow has been numerically investigated. Computations were carried out for an expansion ratio of 3 and over a range of the flow Reynolds numbers by using numerical methods of second-order time accuracy and a fractional-step method that guarantees divergence-free flowfields at all times. The critical Reynolds number above which bifurcation of pitchfork type to asymmetric flow pattern takes place is lower in a flow with a higher expansion ratio, in agreement with the previously reported results. The bifurcation diagrams show that the bifurcation takes place at a Reynolds number, $Re_c = 86.3$, higher than the value that has been reported. The lower critical Reynolds number may be due to deficiencies in their computations which employed SIMPLE-type relaxation methods rather than the initial-value approach of the present study. Characteristics of the flow development during the transition to asymmetric stable flow have been investigated by using spectral analysis of the velocity signals obtained by the simulations.

  • PDF

A Traffic Assignment Model in Multiclass Transportation Networks (교통망에서 다차종 통행을 고려하는 통행배정모형 수립)

  • Park, Koo-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.63-80
    • /
    • 2007
  • This study is a generalization of 'stable dynamics' recently suggested by Nesterov and de Palma[29]. Stable dynamics is a new model which describes and provides a stable state of congestion in urban transportation networks. In comparison with user equilibrium model that is common in analyzing transportation networks, stable dynamics requires few parameters and is coincident with intuitions and observations on the congestion. Therefore it is expected to be an useful analysis tool for transportation planners. An equilibrium in stable dynamics needs only maximum flow in each arc and Wardrop[33] Principle. In this study, we generalize the stable dynamics into the model with multiple traffic classes. We classify the traffic into the types of vehicle such as cars, buses and trucks. Driving behaviors classified by age, sex and income-level can also be classes. We develop an equilibrium with multiple traffic classes. We can find the equilibrium by solving the well-known network problem, multicommodity minimum cost network flow problem.

Improvement of Continuation Power Flow System Applying the Optimal Load Shedding Algorithm (최적 부하절체 알고리듬을 적용한 연속조류계산의 향상)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.899-901
    • /
    • 1998
  • Continuation power flow is a tool that can trace the path of the solution from the base stable solution. However, the base stable solution cannot be calculated when the initial system load is too large to operate at a stable operating point. This case is called as unsolvable case. This paper presents implementation of the optimal load shedding algorithm on continuation power flow. It performs steady-state analysis of power systems at unsolvable case that can occur in contingency analysis. Numerical simulation on 20-bus test system demonstrates that the continuation power flow applying the optimal load shedding algorithm is robust at solvable and unsolvable cases.

  • PDF

Soot Formation Characteristics on the Instability of Laminar Diffusion Flames (층류확산화염의 불안정성에 대한 매연생성 특성의 역할)

  • Nam, Youn-Woo;Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor (하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험)

  • Hwang, Kwon-Sang;Cho, Man-Soon;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

Experiment investigation on flow characteristics of open natural circulation system

  • Qi, Xiangjie;Zhao, Zichen;Ai, Peng;Chen, Peng;Sun, Zhongning;Meng, Zhaoming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1851-1859
    • /
    • 2022
  • Experimental research on flow characteristics of open natural circulation system was performed, to figure out the mechanism of the open natural circulation behaviors. The influence factors, such as the heating power, the inlet subcooled and the level of cooling tank on the flow characteristics of the system were examined. It was shown that within the scope of the experimental conditions, there are five flow types: single-phase stable flow, flash and geyser coexisting unstable flow, flash stable flow, flash unstable flow, and flash and boiling coexisting unstable flow. The geyser flow in flash and geyser coexisting unstable flow is different from classic geysers flow. The flow oscillation period and amplitude of the former are more regular, is a newly discovered flow pattern. By drawing the flow instability boundary diagram and sorting out the flow types, it is found that the two-phase unstable flow is mainly characterized by boiling and flash, which determine the behavior of open natural circulation respectively or jointly. Moreover, compared with full liquid level system, non-full liquid level system is more prone to boiling phenomenon, and the range of heat flux density and undercooling degree corresponding to unstable flow is larger.

Flow Analysis around a Floating Cylinder in a Swirl Flow with a Stereoscopic-PIV (스테레오 PIV에 의한 원관내 선회유동중 실린더형 부유체 주위 유동 특성 해석)

  • Doh, D.H.;Hwang, T.G.;Tanaka, K.;Takei, M.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.319-322
    • /
    • 2006
  • The flow characteristics around a floating cylinder in a swirling flow field in a vertical pipe with a length of 600mm and an inner diameter of 100mm is investigated by the use of the Stereoscopic-PIV system. The measurement system consists of two cameras, a Nd-Yag laser and a host computer. Optical sensors(LEDs) were used to detect the location of the floating cylinder and to activate the Stereoscopic-PIV system. A conditional sampling Stereoscopic-PIV system was developed in which the flow fields around the floating cylinder are measured at the events of the activations. It has been verified that the motion of the floating cylinder becomes stable when the azimuthal velocity component of the swirl flow is maintained at stable states.

  • PDF