• Title/Summary/Keyword: Stabilized algorithm

검색결과 99건 처리시간 0.028초

SNG 선회 안정화 화염구조 가시화를 위한 OH* 자발광 이미지 역변환에서 전처리 효과 (Effect of a Preprocessing Method on the Inversion of OH* Chemiluminescence Images Acquired for Visualizing SNG Swirl-stabilized Flame Structure)

  • 안광호;송원준;차동진
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.24-31
    • /
    • 2015
  • Flame structure, which contains a useful information for studying combustion instability of the flame, is often quantitatively visualized with PLIF (planar laser-induced fluorescence) and/or chemiluminescence images. The latter, a line-integral of a flame property, needs to be preprocessed before being inverted, mainly due to its inherent noise and the axisymmetry assumption of the inversion. A preprocessing scheme utilizing multi-division of ROI (region of interest) of the chemiluminescence image is proposed. Its feasibility has been tested with OH PLIF and $OH^*$ chemiluminescence images of SNG (synthetic natural gas) swirl-stabilized flames taken from a model gas turbine combustor. It turns out that the multi-division technique outperforms two conventional ones: those are, one without preprocessing and the other with uni-division preprocessing, reconstructing the SNG flame structure much better than its two counterparts, when compared with the corresponding OH PLIF images. It is also found that the Canny edge detection algorithm used for detecting edges in the multi-division method works better than the Sobel algorithm does.

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제21권2호
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

High MSE wall design on weak foundations

  • Mahmoud Forghani;Ali Komak Panah;Salaheddin Hamidi
    • Geomechanics and Engineering
    • /
    • 제36권4호
    • /
    • pp.329-341
    • /
    • 2024
  • Retaining structures are one of the most important elements in the stabilization of excavations and slopes in various engineering projects. Mechanically stabilized earth (MSE) walls are widely used as retaining structures due to their flexibility, easy and economical construction. These benefits are especially prominent for projects built on soft and weak foundation soils, which have relatively low resistance and high compressibility. For high retaining walls on weak foundations, conventional design methods are not cost-effective. Therefore, two alternative solutions for different foundation weakness are proposed in this research: optimized multi-tiered MSE walls and single tier wall with foundation improvement. The cost optimization considers both the construction components and the land price. The results show that the optimal solution depends on several factors, including the foundation strength and more importantly, the land price. For low land price, the optimized multi-tiered wall is more economical, while for high land price (urban areas), the foundation improvement is preferable. As the foundation strength decreases, the foundation improvement becomes inevitable.

Fast LBG Algorithm to Reduce the Computational Complexity

  • Kim Dong-Hyun;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.123-127
    • /
    • 2005
  • In this paper, we propose a new method for reducing the number of distance calculations in the LBG (Linde, Buzo, Gray) algorithm, which is widely used method to construct a codebook in vector quantization of speech recognition system. The proposed algorithm can reduce the distance calculation between input vector and codeword by utilizing the observation that codewords are quickly stabilized as the number of iteration increases. From the simulation results, it is shown that we can reduce the running times over $43.77\%$ on average in comparison with current LBG algorithm without sacrificing the performance of codebook.

A two-level parallel algorithm for material nonlinearity problems

  • Lee, Jeeho;Kim, Min Seok
    • Structural Engineering and Mechanics
    • /
    • 제38권4호
    • /
    • pp.405-416
    • /
    • 2011
  • An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.

자장계를 이용한 인공위성의 자세결정 알고리즘 (Spacecraft Attitude Determination Algorithm Using Magnetometer)

  • 민현주;김인중;김진호;박춘배;용기력;이승우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.342-342
    • /
    • 2000
  • We present 3-axis stabilized spacecraft attitude determination algorithm using the magnetometer. The magnetometer has been used as a reliable, light-weight and inexpensive sensor in attitude determination and reaction wheel momentum dumping system. Recent studies have attempted to use the magnetometer when other attitude sensor, such as star tracker, fails. The differences between the measured and computed the Earth's magnetic field components are spacecraft attitude errors. In this paper, we propose extended Kalman filter(EKF) to determine spacecraft attitude with the magnetometer data and gyro-measured body rates. We develop and simulate this algorithm using MATLAB/SIMULINK. This algorithm can be used as a backup attitude determination system.

  • PDF

A Study on Supplied Forecasting of Short-term Electrical Power using Fuzzy Compensative Algorithm

  • Choo Yeon-Gyu;Lee Kwang-Seok;Kim Hyun-Duck
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.779-783
    • /
    • 2006
  • A The estimation of electrical power consumption is becoming more important to supply stabilized electrical power recently. In this paper, we propose a supplied forecasting system of electrical power using Fuzzy Compensative Algorithm to estimate electrical load accurately than the previous. We evaluate a time series of supplied electrical power have the chaotic character using quantitative and qualitative analysis, compose a forecasting system by the maximum change $rate(\alpha)$ of Fuzzy Algorithm and compensative parameter. Simulating it for obtained time series, we can obtain more accurate results than the previous proposed system.

  • PDF

헤테로다인 레이저 간섭계에서 고속 측정을 위한 주파수 변조 알고리즘 (AFM modulation algorithm for the high speed measurement using a heterodyne laser interferometer)

  • 최현승;윤희선;박기환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.922-925
    • /
    • 2005
  • This article describes a FM modulation algorithm to increase the measurement speed by increasing the beat frequency of the laser without acousto-optic modulator(AOM) in the heterodyne laser interferometer. The proposed algorithm can increase the beat frequency of the heterodyne laser which limit the measurement speed by adjusting a carrier frequency through electronic circuit, while AOM is used to shift the frequency of the heterodyne laser in conventional method. Electronic circuit is constructed to modulate the signals from a laser interferometer and a waveform generator. The brier analysis, the measurement scheme of the system, and the experimental results using a Zeeman-stabilized He-Ne laser are presented. They demonstrate that the proposed algorithm is proven to enhance the measurement speed limit by increasing the beat frequency of the heterodyne laser.

  • PDF

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

안정화 필터 알고리즘을 적용한 IIR 구조 능동 머플러의 설계 (Design of IIR Structure Active Mufflers using Stabilized Filter Algorithms)

  • 안동준;남현도
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.570-575
    • /
    • 2019
  • 능동 머플러는 자동차 머플러의 배기소음을 저감하기 위하여 능동 소음 제어 기법을 적용하여 구현된다. 기존의 보편적인 Filtered_x LMS 알고리즘은 음향 궤환이 존재할 경우 제어필터의 차수가 매우 커지고 수렴성이 악화되는 문제가 있다. 이를 보완할 수 있는 Recursive LMS 알고리즘은 적응필터의 적응과정에서 쉽게 발산할 수 있어 적용이 제한되어 왔다. 본 논문에서는 수렴 성능과 계산량 부담이 개선되도록 1차 경로와 2차 경로 전달함수의 구조를 IIR 필터로 설계하였으며 IIR 필터 구조의 단점인 안정성 확보를 위해 안정화 필터 알고리즘을 적용하였다. 안정화 필터 알고리즘은 적응과정 중에 음향 궤환에 해당하는 전달함수의 극점이 발산하는 것을 방지하기 위하여 극점을 단위원 내부로 끌어 당기는 역할을 수행한다. 이러한 방법으로 능동 머플러 시스템의 계산량 절감과 수렴성능을 향상시킬 수 있다. 제안한 시스템의 유용성을 보이기 위하여 가변 환경인 디젤 엔진의 배기음향을 대상으로 기존의 Filtered_x LMS 알고리즘과 제안한 시스템과의 성능을 비교하여 그 우수성을 보였으며, 계산량은 절반 이하, 수렴 특성은 4배 이상의 성능을 보였다.