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a b s t r a c t

Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance
method with incremental action is proposed for the control system with sensor faults of the once-
through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction
environment for the agent of reinforcement learning. The reinforcement learning agent chooses an ac-
tion according to the system state obtained by the pressure sensor, the incremental action can gradually
approach the optimal strategy for the current fault, and then the agent updates the network by different
rewards obtained in the interaction process. In this way, we can transform the active fault tolerant
control process of the OTSG to the reinforcement learning agent's decision-making process. The com-
parison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed
strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly
control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value,
and the OTSG can run normally and stably.

© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. All rights reserved. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The once-through steam generator(OTSG) is a key part of the
nuclear power plant, the research on the control of the OTSG
mainly focus on the pressure control in the secondary loop, that is,
the outlet steam quality control is realized by controlling the steam
pressure at the outlet [1]. The OTSG control system has a large
number of sensors, due to equipment fatigue and changes in in-
ternal and external conditions, sensors may appear precision
decline, indicator drift, or complete failure in the long-term high
temperature and high-pressure operation process. This may cause
the operation of the nuclear power plant to deviate from the
optimal state, and affect the unit's economy, or even the safety of
the whole plant [2]. At present, most nuclear power plants use
hardware redundancy to deal with the fault tolerance of equip-
ment, which not only requires a large amount of money and
manpower input but also brings safety and reliability problems in
the design and construction stage. However, the development of
fault-tolerant control technology has greatly improved the defects
caused by hardware redundancy [3]. Therefore, it is of great prac-
tical significance to study the fault-tolerant control method of the
d by Elsevier Korea LLC. All rights
OTSG control systemwith faults for improving the safety, reliability,
and economy of the nuclear power plants.

To overcome the faults of sensors, actuators, and other compo-
nents, scholars at home and abroad have made a lot of efforts in the
research of fault diagnosis and fault-tolerant control. In 1986, the
concept of fault-tolerant control was formally proposed by the
national science foundation and IEEE control systems society at the
control symposium held at Santa Clara University. In 1993, the first
comprehensive paper on fault-tolerant control appeared in the
world, comprehensively describing the problems and basic solu-
tions of fault-tolerant control technology [4]. In 2004, the work on
fault diagnosis and fault-tolerant control compiled by Mogens
Blanke et al. provided a relatively complete theoretical basis for
fault-tolerant control [5]. For the controlled system under failure,
the method of reliable stabilization control can be adapted to
control the target system by connecting multiple compensation
controllers in parallel simultaneously, to maintain the stability of
the system when the system is under failure [6]. In addition,
Gopinathan and Boskovic et al. put forward an idea of integrity
control, which can still ensure the stability and security of the
system when sensor or actuator failure occurs in the system [7].
Methods above are passive fault-tolerant control which does not
need online monitoring and evaluation when the system fails and
has certain robustness, but the design of passive fault-tolerant
control system needs prediction of the possibility of all kinds of
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Fig. 1. The schematic diagram of the OTSG.

Fig. 2. The framework of reinforcement learning.
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faults, and the implementation is usually very complex. The per-
formance of the passive fault-tolerant control system cannot be
optimized because it is also too conservative.

Different from passive fault-tolerant control, active fault-
tolerant control ensures the stable operation of the system
through online fault evaluation and control signal reconstruction.
Most active fault tolerant control systems need to acquire online
fault information in real-time through fault detection and diagnosis
unit(FDD) and adjust the parameters or structure of the control
system according to the fault information, and then reconstruct the
control system, which enables the system to run normally after
failure [8].

In recent years, with the rise of big data and artificial intelli-
gence, scholars at home and abroad have begun to pay attention to
fault-tolerant control based on intelligent learning methods.
ZhanshanWang et al. [9] studied the fault-tolerant control problem
of multiple-input multiple-output of nonlinear discrete systems
based on reinforcement learning method, sought the optimal
control signal and new cost function after failure by utilizing the
approximation ability of the neural network. For actuator and
sensor faults of n-order nonlinear systems, Faezeh Farivar et al. [10]
combined reinforcement learning with traditional control theory
and designed a fault-tolerant controller based on robust control
and reinforcement learning, which constructed evaluation
methods and action strategies using neural networks.

In this paper, an active fault-tolerant control scheme based on
the Deep Q-Network(DQN) algorithm of reinforcement learning is
proposed for the OTSG control system with sensor faults, and in-
cremental action for the reinforcement learning method is inno-
vatively proposed. Compared with the model-based active fault-
tolerant control method, fault-tolerant control based on rein-
forcement learning can extract fault features according to the sys-
tem state, and give the optimal strategy under the current
condition at the same time, so that the system can maintain
stability.

Because of the uncertainty of the control system failure, the
effects of the fault-tolerant control systems based on the deter-
ministic strategy of reinforcement learning are discouraging. This
paper proposes the incremental action instead of deterministic
strategy which reconstructs the controller by incremental iteration
in the fault-tolerant control system, so as to achieve the optimal
solution to implement the fault-tolerant control.

2. Non-linear mathematical model of the OTSG

2.1. Model simplification and assumptions

The OTSG is a type of steam generator which applies double
sides to transfer heat. The primary fluid flows from top to bottom
both in the inner tube of the casing pipe and the shell part of the
outer tube, and the secondary fluid flows from bottom to top in the
annulus channel of the casing pipe and then flows out the super-
heated steam. The OTSG can be divided into three regions: sub-
cooled, nucleate boiling, superheat regions [11]. The input and
output of the mathematical model are as Fig. 1

The mass, energy, and state equations were established by using
lumped parameter method. The outlet parameters were selected as
lumped parameters to reflect the variation of medium parameters
in the whole pipe section, and the average inlet and outlet pa-
rameters were selected as lumped parameters to reflect the average
medium parameters in the whole pipe section. The temperature
and enthalpy, the outlet parameters of each section of the primary
and secondary loops are considered as lumped parameters [12].
Considering the variation of gaseous density with pressure, the
density of the boiling region can be illustrated by the average
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density of the inlet and outlet, and the whole density of the su-
perheated region can be substituted by the inlet density.

The assumptions of the model are as follows：

(1) The steam generatormathematical model is assumed to one-
dimensional model.

(2) The subcooled region, nucleate boiling region, superheat
region are regarded as independent heat exchangers.

(3) The density of the whole liquid flow region is considered to
be a constant, and the average density of the gas flow region
is considered to change with pressure.

(4) The heat transfer coefficient is treated as a constant.
(5) The heat fluxes in the inner tube, the shell part of the outer

tube, and the annulus channel of the casing pipe are assumed
to be equal.

The mathematical model of the OTSG is shown below:

(1) Subcooled region: h � hf (hf is the enthalpy of saturated
water)

Energy conservation equation in the primary subcooled region:

d
�
rpl6Aphp7

�
dt

¼wp5hp5 �wp7hp7 � Qp6 (1)

Energy conservation equation in the secondary subcooled
region:

dðrs6l6Ashs5Þ
dt

¼ws7hs7 �ws5hs5 þ Qp6 (2)

Mass conservation equation in the secondary subcooled region:
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dðrs6l6AsÞ
dt

¼ws7 �ws5 (3)

(2) Nucleate boiling region: 0< x<1 (x is dryness)

Energy conservation equation in the primary nucleate boiling
region:

d
�
rpl4Aphp5

�
dt

¼wp3hp3 �wp5hp5 � Qp4 (4)

Energy conservation equation in the secondary nucleate boiling
region:

dðrs4l4Ashs3Þ
dt

¼ws5hs5 �ws3hs3 þ Qp4 (5)

Mass conservation equation in the secondary nucleate boiling
region:

dðrs4l4AsÞ
dt

¼ws5 �ws3 (6)

(3) Superheat region: the secondary saturates steam to the
outlet

Energy conservation equation in the primary superheat region:

d
�
rpl2Aphp3

�
dt

¼wp1hp1 �wp3hp3 � Qp2 (7)

Energy conservation equation in the secondary superheat
region:

dðrs2l2Ashs1Þ
dt

¼ws3hs3 �ws1hs1 þ Qp2 (8)

Mass conservation equation in the secondary superheat region:

dðrs2l2AsÞ
dt

¼ws3 �ws1 (9)

where Q is heat transfer; l is effective length; h is the enthalpy of
each cross-section; w is flow; r is density; A is efficient flow area. p
and s represent primary and secondary loops individually.
3. Design of active fault-tolerant controller for the OTSG
based on reinforcement learning

The core of the reinforcement learning algorithm is to design
appropriate state and action space and reward function. The state
space is the representation of the environment, the action space is
the reasonable description of the action of the agent, and the
reward function can correctly evaluate the effect of fault-tolerant
control. This section will define the state space of the active fault-
tolerant controller, design the reward function, and introduce the
incremental action.
3.1. DQN algorithm

Reinforcement learning is a process in which an agent interacts
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with the environment continuously to obtain different reward
values for training. Fig. 2 shows the interaction process of rein-
forcement learning. The Q-learning algorithm of reinforcement
learning is a value iterative algorithm, which calculates each Q
value and updates the Q value table according to the prior knowl-
edge learned by the agent [13]. However, when the state of the
environment becomes complex, the state-action space, namely the
Q value table, will become very complex, leading to the problem of
“dimension disaster”, whichmakes themodel cannot be calculated.
Fortunately, the emergence of deep reinforcement learning can
effectively solve this problem.

The representative algorithm of deep learning is the DQN. DQN
algorithm combines the advantages of deep neural networks and
Q-learning. The neural network is responsible for modeling the Q
value table which realizes the representation of all the state-action
values. Q-learning is modeled by Markov decision which is repre-
sented by the current state, action, reward, strategy, and next action
[14]. DQN improves the relevance and efficiency of samples by
setting the experience replay and improves the stability of updates
by regularly updating the target Q network. The core of the DQN
algorithm includes three points: objective function, network
setting, and experience replay:

(1) Objective function: The objective function of DQN is con-
structed by Q-learning, and the formula is shown below:

Q 0ðs; aÞ)Qðs; aÞ þ a½rþmaxQðs0; a0Þ �Qðs; aÞ� (14)

where, (s,a) represents the current state and action, (s0,a') repre-
sents the state and action at the next moment, Q(s,a) represents the
current state-action value, Q0(s,a) represents the updated state-
action value, and r represents the action reward at the state s.

The target state-action value function can be expressed by the
Behrman equation as follows:

y0 ¼ rþ gmaxQðs0; a0; qÞ (15)

where y' represents the target Q value.
The loss function is the mean square error loss function:

LðqÞ¼E
h
ðy0 � Qðs; a; qÞÞ2

i
(16)

where q is the weight parameter of the neural network model.

(2) Network setting. DQN evaluates the current state-action
value function through the target network and Q network.
The target network estimates the Q value at the next
moment and solves the problem of the “dimension disaster”
of the Q value table. Q network uses stochastic gradient
descent to update network weight q, and the gradient
descent algorithm formula is as follows:

Dq¼E½y0 �Qðs; a; q1Þ�VqQðs; a; q1Þ (17)
(3) Experience replay. Experience replay solves the problem of
sample relevance and efficiency utilization of sample. When
an agent interacts with the environment, samples can be
obtained from the environment, and the sample data can be
stored in the experience pool. We can train the neural
network by randomly selecting a small batch of samples
from the experience pool at a time. The main purpose of



Table 1
Reconstruction scheme of fault-tolerant controller based on reinforcement learning.

Reconstruction scheme Scheme state Scheme illustration

A0 [0] The system is normal and no action
A1 [-0.001] Negative action to compensate sensor fault
A2 [0.001] Forward action to compensate sensor fault
A3 [-0.0001] Negative action to compensate sensor fault
A4 [0.0001] Forward action to compensate sensor fault

Fig. 3. The framework of the fault-tolerant controller based on reinforcement learning.
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experience replay is to improve learning efficiency by reus-
ing samples.
3.2. Design of state-space

The state-space parameters are selected from the control sys-
tem, which can reflect the current operating state of the control
system. The fault-tolerant controller extracts information through
the state space parameters and takes them as an important basis for
fault-tolerant decision-making. According to the structure of the
steam generator, the water volume in the secondary loop of the
OTSG is small. When the load changes, the steampressure oscillates
easily. If the water supply cannot keep up with the pace of changes
at this time, the equipment in the secondary loop will have an
impact [15]. Therefore, in order to represent the dynamic
Table 2
Main parameters of the OTSG.

Operating parameters at Full power

Inlet pressure at primary side 15.2MPa
Total coolant flow rate 12.45 kg/s
Coolant inlet temperature 298�C
Coolant outlet temperature 265�C
Steam pressure 3.14 MPa
Feedwater temperature 65�C
Feedwater flow 0.783 kg/s
Full capacity 3.0MW
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characteristic of the OTSG, we choose the steam pressure as the
state space. This article selects the parameters of state-space
including the steam generator outlet pressure, the current pres-
sure deviation e (t)(deviation between the current outlet pressure
and set pressure), and deviation value in last timee (t-1).

3.3. Design of reward function

The reward function can be regarded as the score to evaluate the
actions generated by the fault-tolerant controller, and the score is
the loss index of training. The optimal action can be determined by
minimizing the loss, so the reward function directly determines
whether the agent can achieve the expected goal. In each episode,
the distance between the pressure and the set value is regarded as
the punishment item at each step. After reaching the target, reward
1 can be given.

rt ¼
��absðeÞ; if jej � 0:01
1; if jej<0:01

(18)

3.4. Design of incremental action

Traditional reinforcement learning methods often adopt deter-
ministic strategies in non-controlled fields. Google DeepMind team
developed an artificial intelligence chess agent by using the deep
reinforcement learning method, and the strategy adopted is the
deterministic strategy[16].

The fault of the control system is unpredictable and the fault-
tolerant controller based on deterministic strategy will be limited.
In this paper, the DQN algorithm of reinforcement learning based
on incremental actions is proposed to achieve optimal actions.
Moreover, the method enriches the diversity of actions and gives
full play to the self-learning characteristics of reinforcement
learning agents.

3.4.1. Action selection method
In this paper, the ε-greedy factor is introduced into the action

selection of the fault-tolerant controller, and the ε-greedy factor
represents the probability of random strategy selection. The
ε-greedy factor is annealed from 1 to 0 during the training process.
In the initial exploration stage, the controller has a high probability
of random strategy selection. As the action strategy is iterated to
the later stage, the controller will choose the optimal strategy
which has a high probability. At the end of the training, when the
controller's decision is fully mature, the ε-greedy factor is annealed
to zero. The ε -greedy strategy is expressed as follows:

a¼
(
random action a2A; d< ε

argmin
a

bQ ðs; aÞ (19)

where: a is the action of the controller, that is, the incremental
adjustment value of the feedwater flow for the OTSG; A is the action
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set, where the elements are all possible actions selected by the
controller. In contrast to the state-action value function Q(s, a), Q (̂s,
a) is the estimate of the state-action value in the current state s and
action a.
3.4.2. Incremental action
The output of the fault-tolerant controller based on reinforce-

ment learning is the reconstruction scheme of the control system.
Reconstruction schemes can be listed through enumeration.
Different reconstruction schemes represent incremental actions
with different steps. During the training process, controller actions
are incrementally superposed and updated, so as to obtain the
optimal strategy.

U¼fA0;A1;A2;A3;A4g
U is reconstruction scheme set for the control system, as shown

in Table 1, the controller action is incremental, and divided into
reverse action and positive action. The controller is fault-tolerant
by the compensation method. This article design specific strate-
gies for the once-through steam generator sensor fault, considering
the controller training convergence speed and the accuracy of the
optimal strategy, the incremental action take steps ±0.0001
and ± 0.001.
4. Active fault-tolerant controller structure and algorithm
implementation

The fault-tolerant controller structure is based on DQN as shown
in Fig. 3. The DQN algorithm sets up a dual network, the Q network,
and the target network. The target Q value remains unchanged for a
while by introducing the target network, which reduces the
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relevance between the current Q value and target Q value to a
certain extent, thereby reducing the possibility of loss value oscil-
lation at training, to improve the stability of the algorithm.

The agent receives states and rewards from the environment
and sends actions to the environment., and explores the optimal
action for the fault-tolerant controller through the interaction with
the environment. DQN creates a replay buffer to store historical
experiences and then randomly selects samples from it and feeds
those samples to update the Q network. The replay buffer helps the
agent to be able to learn previous experiences and improve the
efficiency of sample utilization. Random sampling can break the
correlation between samples and make the learning process of
agents more stable.

The DQN uses 2 neural networks, namely Q network and target
Q network, the role of each network are as below:

(1) Q network: selects an action according to the state s, the
agent interacts with the environment(OTSG) to generate the
next state s_ and reward r. (s, a, r, s_) is stored in the replay
buffer. When the number of samples stored in the experience
pool reaches a certain amount, small-batch samples are
taken out to train the network.

(2) Target network: generates the target Q value. Before each
batch size step, the parameters are regularly copied from the
Q network to the target network to provide a stable training
target for the Q network, so that the estimation error can be
controlled and the possibility of model oscillation and
divergence can be solved to a certain extent.

The pseudocode of DQN is given in Algorithm 1.

Algorithm1. DQN



Fig. 4. Training effects of DQN.
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Fig. 5. The pressure and feedwater curves with DQN contro

Fig. 6. The pressure and feedwater curves with RL control
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5. Experiments and results

The OTSG simulation model is built with Matlab, the rein-
forcement learning control algorithm program is developed with
Python, and the data exchange between Python program and
Matlab simulation model through Socket communication. The
simulation experiment and performance analysis of the OTSG
pressure control is carried out to verify the effectiveness of the
above scheme.

The main parameters of the OTSG are shown in Table 2.
Fig. 4 shows the reward curve of the active fault-tolerant control

based on reinforcement learning in the training process. The hor-
izontal axis represents the number of training episodes, and the
vertical axis represents the total amount of reward earned during
the episode. The reward function is defined in formula (18), when
the pressure deviation is less than the set value, the reward can be
1.

As can be seen from the reward curve, the agent can be guided
by more reward settings to find the optimal action according to the
reward of real-time feedback, so that it can choose the action with
high reward value more quickly after training and learning, and
gradually converge.
l under constant deviation fault of the pressure sensor.

under constant deviation fault of the pressure sensor.



Fig. 7. The pressure and feedwater curves without fault tolerance control under constant deviation fault of the pressure sensor.
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In order to verify the effect of the fault-tolerant controller for the
OTSG, the active fault-tolerant controller after training is tested
under three kinds of faults of the pressure sensor: constant devi-
ation, constant gain and stuck.

To compare the proposed intelligent fault-tolerant control
Fig. 8. The pressure and feedwater curves with DQN con

Fig. 9. The pressure and feedwater curves with RL contr
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method, the traditional reinforcement learning algorithm(RL) with
fixed strategies is selected as the comparison method. At the same
time, in order to explain the performance of the system without
fault-tolerant control, PID control without fault-tolerant control is
selected, that is, sensor fault information is not provided to PID (PID
trol under constant gain fault of the pressure sensor.

ol under constant gain fault of the pressure sensor.



Fig. 10. The pressure and feedwater curves without fault tolerance control under constant gain fault of the pressure sensor.
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can also achieve fault-tolerant control when providing fault infor-
mation, but it is not the focus of this paper).
Fig. 11. The pressure and feedwater curves with DQN

Fig. 12. The pressure and feedwater curves with RL c
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5.1. Experiment of the sensor under constant deviation fault

When the OTSG is stable running for 50s, the constant deviation
fault of the pressure sensor is added with the fault degree
control under stuck fault of the pressure sensor.

ontrol under stuck fault of the pressure sensor.



Fig. 13. The pressure and feedwater curves without fault tolerance control under stuck fault of the pressure sensor.
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of �0.1Mpa. In order to verify the effect of the active fault-tolerant
controller based on reinforcement learning with incremental ac-
tion, the RL with fixed strategies is selected as the comparison in
this paper. The fault tolerance control effect of the system with
DQN, RL, PID(without fault tolerance control) are shown in
Figs. 5e7 below.

As can be seen from the figures above, due to the dynamic
characteristics of the OTSG, when the constant deviation fault oc-
curs to the pressure sensor, the pressure without fault tolerance
control fluctuates rapidly in a short time and finally stabilizes near
the deviation value. As shown in Fig. 7, compared with the method
in this paper, the traditional reinforcement learning algorithm(RL)
can only select the fixed strategies due to the limitation of deter-
ministic strategies, resulting in a large error between the control
effect and the setpoint, and the fluctuation range of the curve is
large. From Fig. 5, the fault-tolerant controller based on DQN can
quickly respond to the sensor fault, which makes the pressure
change can be contained in the transition period, the fluctuation
range of pressure and feedwater is relatively small, and the pres-
sure can be stabilized at the set value quickly.

5.2. Experiment of the sensor under constant gain fault

The gain fault is also a kind of fault that occurs frequently. Gain
fault shows that the measured value is a certain proportion of the
real value, and usually, the measured value is greater than the real
value. When the OTSG is stable running for 50s, the constant gain
fault of the pressure sensor is added with the fault degree of 1.1. The
control effect of the system is shown in Figs. 8e10 below.

For Fig. 8, this is similar to pressure change when the pressure
sensor is under constant deviation fault and the fault-tolerant
controller based on DQN can quickly regulate pressure to the set-
point with a small fluctuation range. Compared with the pressure
based on RL control in Fig. 9, it can be seen that although RL can be
stabilized, the fluctuation range of the pressure is large. As can see
from Fig. 10, when the failure occurs, the control system without
fault tolerance can't control the pressure in the set value, the
control system almost failed.

5.3. Sensor stuck fault experiment

When the OTSG is stable running for 50s, the stuck fault of the
pressure sensor is added with the fault degree of 3.13Mpa. The
control effect of the system is shown in Figs. 11e13 below.

It can be seen from the figures above that the fault-tolerant
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control based on DQN can judge the sensor fault and stabilize the
pressure value near the set value in a short time. Although the
pressure controlled by RL can be stabilized around the setpoint, the
pressure curve is not stable and fluctuates widely. The control
system without fault tolerance has no effect after the pressure
sensor is stuck, and the pressure is in a divergent state, which will
eventually lead to the collapse of the control system.
6. Conclusions

Based on the DQN algorithm of reinforcement learning, this
paper proposes an active fault-tolerant control method for the
OTSG and innovatively proposes incremental action. The results of
Matlab and Python co-simulation show that the fault-tolerant
control algorithm proposed in this paper can maintain the pres-
sure near the set value rapidly when the pressure sensor fails, and
the comparison effect is obvious. The main innovations of this
article are as follows:

(1) The fault-tolerant controller based on reinforcement
learning adopts the Q network to extract characteristics of
the state, and sense the fault information, and then adjust
the controller. Compared with the traditional fault-tolerant
control method, this method is a kind of active fault-
tolerant control method based on data, which simplify the
fault detection system, system modeling, and the design of
the controller;

(2) For uncertain faults, a reinforcement learning controller with
incremental actions is proposed, which breaks through the
limitation of the deterministic strategy in traditional rein-
forcement learning algorithm, and achieves the optimal
fault-tolerant strategy for the current system.

However, our method is not perfect and there are some limi-
tations. First, the convergence of the algorithm depends on the
setting of the reward function. The reward function needs to be set
artificially according to different objects, and the algorithmwill not
be able to converge with an unreasonable reward function. Second,
the hyper-parameters of the DQN algorithm need to be regulated
relying on experience or trial and error to get better performance.
In future work, we need to improve the portability of the algorithm
when applying our method to practical work, so that the algorithm
performs equally well in different situations.
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