Browse > Article
http://dx.doi.org/10.11568/kjm.2013.21.2.125

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS  

Pyo, Jae-Hong (Department of Mathematics Kangwon National University)
Publication Information
Korean Journal of Mathematics / v.21, no.2, 2013 , pp. 125-150 More about this Journal
Abstract
The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.
Keywords
Projection method; Gauge-Uzawa method; the rotational form of pressure correction method; Navier-Stokes equation; incompressible fluids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods Springer-Verlag, (1994).
2 F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, (1991).
3 A.J. Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp., 22 (1968), 745-762.   DOI   ScienceOn
4 P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988).
5 V. Girault, and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag (1986).
6 J.L. Guermond and J. Shen. A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys., 192:262-276, 2003.   DOI   ScienceOn
7 J.L. Guermond and J. Shen On the error estimates of rotational pressurecorrection projection methods, Math. Comp., 73 (2004), 1719-1737.
8 J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-stokes problem. I. regularity of solutions and second-order error estimates for spatial discretization, SIAM J. Numer. Anal., 19 (1982), 275-311.   DOI   ScienceOn
9 K. Ito and Z. Qiao A high order compact MAC finite difference scheme for the Stokes equations: augmented variable approach, J. Comput. Phys., 227 (2008), 8177-8190.   DOI   ScienceOn
10 R.B. Kellogg and J.E. Osborn, A regularity result for the stokes problems in a convex polygon, J. Funct. Anal., 21 (1976), 397-431.   DOI
11 R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part I : the Navier-Stokes equations, SIAM J. Numer. Anal., 43 (2005), 1043-1068.   DOI   ScienceOn
12 R.H. Nochetto and J.-H. Pyo, A finite element Gauge-Uzawa method. Part II : Boussinesq equations, Math. Models Methods Appl. Sci., 16 (2006), 1599-1626.   DOI   ScienceOn
13 A. Prohl, Projection and Quasi-Compressiblity Methods for Solving the Incompressible Navier-Stokes Equations, B.G.Teubner Stuttgart (1997).
14 J.-H. Pyo Error estimates for the second order semi-discrete stabilized Gauge-Uzawa method For the Navier-Stokes equations, Inter. J. Numer. Anal. and Model, 10 (2013), 24-41.
15 J.-H. Pyo and J. Shen, Normal mode analysis of second-order projection methods for incompressible flows, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 817-840.   DOI
16 J.-H. Pyo and J. Shen, Gauge Uzawa methods for incompressible flows with Variable Density, J. Comput. Phys., 211 (2007), 181-197.
17 R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la methode des pas fractionnaires. II, Arch. Rational Mech. Anal., 33 (1969), 377-385.
18 R. Temam, Navier-Stokes Equations, AMS Chelsea Publishing, (2001).
19 L.J.P. Timmermanns, P.D. Minev, and F.N. Van De Vosse, An approximate projection scheme for incompressible flow using spectral elements, Int. J. Num. Meth. Fluids, 22 (1996), 673-688.   DOI