• Title/Summary/Keyword: Stabilized Finite Element

Search Result 70, Processing Time 0.021 seconds

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

Large Scale Stabilized Finite Element Simulation and Modeling for Environmental Flows in Urban Area

  • Kashiyama Kazuo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.21-26
    • /
    • 2006
  • A large-scale finite element simulation and modeling method is presented for environmental flows in urban area. Parallel stabilized finite element method based on domain decomposition method is employed for the numerical simulation. Several GIS and CAD data are used for the preparation of the shape model for landform and urban structures. The present method Is applied to the simulation of flood flow and wind flow In urban area. The present method is shown to be a useful planning and design tool for the natural disasters and the change of environments in urban area.

  • PDF

A STABILIZED CHARACTERISTIC FINITE VOLUME METHOD FOR TRANSIENT NAVIER-STOKES EQUATIONS

  • Zhang, Tong
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1205-1219
    • /
    • 2011
  • In this work, a stabilized characteristic finite volume method for the time-dependent Navier-Stokes equations is investigated based on the lowest equal-order finite element pair. The temporal differentiation and advection term are dealt with by characteristic scheme. Stability of the numerical solution is derived under some regularity assumptions. Optimal error estimates of the velocity and pressure are obtained by using the relationship between the finite volume and finite element methods.

A POSTERIORI ERROR ESTIMATORS FOR THE STABILIZED LOW-ORDER FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS BASED ON LOCAL PROBLEMS

  • KIM, KWANG-YEON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.21 no.4
    • /
    • pp.203-214
    • /
    • 2017
  • In this paper we propose and analyze two a posteriori error estimators for the stabilized $P_1/P_1$ finite element discretization of the Stokes equations. These error estimators are computed by solving local Poisson or Stokes problems on elements of the underlying triangulation. We establish their asymptotic exactness with respect to the velocity error under certain conditions on the triangulation and the regularity of the exact solution.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

A novel treatment of nonmatching finite element meshes via MLS approximation with stabilized nodal integration (이동 최소 제곱 근사와 안정화 절점 적분을 이용한 불일치 유한 요소망의 처리)

  • 조영삼;김현규;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.591-598
    • /
    • 2002
  • The interface element method for non-matching FEM meshes is extended using stabilized nodal integration. Two non-matching meshes are shown to be joined together compatibly, with the aid of the moving least square approximation. Using stabilized nodal integration, the interface element method is able to satisfy the patch test, which guarantees the convergence of the method.

  • PDF

Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests

  • Azadegan, Omid;Li, Jie;Jafari, S. Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.247-261
    • /
    • 2014
  • Analytical and numerical modeling of soft or problematic soils stabilized with lime and cement require a number of soil parameters which are usually obtained from expensive and time-consuming laboratory experiments. The high shear strength of lime and cement stabilized soils make it extremely difficult to obtain high quality laboratory data in some cases. In this study, an alternative method is proposed, which uses the unconfined compressive strength and estimating functions available in literature to evaluate the shear strength parameters of the treated materials. The estimated properties were applied in finite element model to determine which estimating function is more appropriate for lime and cement treated granular soils. The results show that at the mid-range strength of the stabilized soils, most of applied functions have a good compatibility with laboratory conditions. However, application of some functions at lower or higher strengths would lead to underestimation or overestimation of the unconfined compressive strength.

Behavior of Mechanically Stabilized Earth Retaining Walls with Different Construction Sequence (시공과정에 따른 보강토 옹벽의 거동 특성)

  • 유충식;이광문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.473-480
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of mechanically stabilized earth retaining wall. It has been recognized that the currently available design guidelines, which is base on the limit equilibrium approach, cannot properly account the interaction effect between the components, construction sequence, and foundation settlement which may impose a significant influence on the wall behavior. A parametric study using finite element analysis was performed to investigate the behavior of MSE wall under different construction conditions and the applicability of the current design approach. In the parametric analysis, the effects of the construction sequence, the surcharge, and the foundation stiffness were studied and a detailed finite element modeling for various components of the system were employed. The results, such as wall displacement and earth pressure distributions, reinforcement forces, vertical stress distribution were then thoroughly analyzed to investigate the effect of construction details on the wall behavior.

  • PDF

A STABILZED FINITE ELEMENT COMPUTATION OF FLOW AROUND OSCILLATING 2D BODIES (안정화된 유한요소법을 이용한 진동하는 2차원 물체 주의 유동해석)

  • Ahn, Hyung-Taek;Rasool, Raheel
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.289-294
    • /
    • 2010
  • Numerical stud of an oscillating body in incompressible fluid is performed. Stabilized finite element method comprising of Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) formulations of linear triangular elements was employed to solve 2D incompressible Navier-Stokes equations whereas the motion of the body was considered by incorporating the arbitrary Langrangian-Eulerian(ALE) formulation. An algebraic moving mesh strategy is utilized for obtaining body conforming mesh deformation at each time step. Two tests cases, namely motion of a circular cylinder and of an airfoil in incompressible flow were analyzed. The model is first validated against the stationary cases and then the capability to handle moving boundaries is demonstrated.

  • PDF

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.