• 제목/요약/키워드: Stability and deformation analysis method

검색결과 236건 처리시간 0.026초

Stability evaluation model for loess deposits based on PCA-PNN

  • Li, Guangkun;Su, Maoxin;Xue, Yiguo;Song, Qian;Qiu, Daohong;Fu, Kang;Wang, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.551-560
    • /
    • 2021
  • Due to the low strength and high compressibility characteristics, the loess deposits tunnels are prone to large deformations and collapse. An accurate stability evaluation for loess deposits is of considerable significance in deformation control and safety work during tunnel construction. 37 groups of representative data based on real loess deposits cases were adopted to establish the stability evaluation model for the tunnel project in Yan'an, China. Physical and mechanical indices, including water content, cohesion, internal friction angle, elastic modulus, and poisson ratio are selected as index system on the stability level of loess. The data set is randomly divided into 80% as the training set and 20% as the test set. Firstly, principal component analysis (PCA) is used to convert the five index system to three linearly independent principal components X1, X2 and X3. Then, the principal components were used as input vectors for probabilistic neural network (PNN) to map the nonlinear relationship between the index system and stability level of loess. Furthermore, Leave-One-Out cross validation was applied for the training set to find the suitable smoothing factor. At last, the established model with the target smoothing factor 0.04 was applied for the test set, and a 100% prediction accuracy rate was obtained. This intelligent classification method for loess deposits can be easily conducted, which has wide potential applications in evaluating loess deposits.

On the thermal buckling response of FG Beams using a logarithmic HSDT and Ritz method

  • Kadda Bouhadjeb;Abdelhakim Kaci;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohammed A. Al-Osta;S.R. Mahmoud;Farouk Yahia Addou
    • Geomechanics and Engineering
    • /
    • 제37권5호
    • /
    • pp.453-465
    • /
    • 2024
  • This paper presents a logarithmic shear deformation theory to study the thermal buckling response of power-law FG one-dimensional structures in thermal conditions with different boundary conditions. It is assumed that the functionally graded material and thermal properties are supposed to vary smoothly according to a contentious function across the vertical direction of the beams. A P-FG type function is employed to describe the volume fraction of material and thermal properties of the graded (1D) beam. The Ritz model is employed to solve the thermal buckling problems in immovable boundary conditions. The outcomes of the stability analysis of FG beams with temperature-dependent and independent properties are presented. The effects of the thermal loading are considered with three forms of rising: nonlinear, linear and uniform. Numerical results are obtained employing the present logarithmic theory and are verified by comparisons with the other models to check the accuracy of the developed theory. A parametric study was conducted to investigate the effects of various parameters on the critical thermal stability of P-FG beams. These parameters included support type, temperature fields, material distributions, side-to-thickness ratios, and temperature dependency.

유동성 채움재 타설로 굴착부를 충진한 매립관의 변형특성 연구 (The Study of Deformation Characteristics into Landfill and Underground Pipe using CLSM)

  • 남승혁;채휘영;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제12권9호
    • /
    • pp.27-33
    • /
    • 2011
  • 기존 지하 매설관 시공법의 경우 관의 하단부 다짐이 어렵고, 다짐효율이 좋지 않아 지하 매설물의 안정성을 저감시키고 이로 인한 파손이 발생한다. 이러한 문제점을 해결하기 위한 방법 중 하나가 유동성 채움재를 이용하는 것이다. 따라서 본 연구에서는 지하 매설관 시공 시 뒤채움재의 종류에 따른 매설관의 거동을 파악하기 위하여 지하 매설관에 대한 수치해석을 수행하였고, 동일한 조건에서 뒤채움재의 종류에 따른 관의 주요 부분의 변위, 지표침하, 수직토압을 비교 검토하여 지하 매설관의 변형특성을 예측하였다. 수치해석을 시행한 결과 뒤채움재로 유동성 채움재를 사용하는 것이 일반모래를 사용하는 것에 비해 지표침하 및 관변형량이 작아지고 수직토압 또한 감소한다는 것을 알 수 있었다.

Numerical study on stability and deformation of retaining wall according to groundwater drawdown

  • Hyunsung Lim;Jongjeon Park;Jaehong Kim;Junyoung Ko
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.195-202
    • /
    • 2023
  • In this study, the ground settlement in backside of retaining wall and the behavior of the retaining wall were analyzed according to the method of groundwater drawdown due to excavation by using two-dimensional(2D) finite element analysis. Numerical analysis was performed by applying 1) fixed groundwater level, 2) constant groundwater drawdown, and 3) transient groundwater drawdown. In addition, the behavior of the retaining wall according to the initial groundwater level, ground conditions, and surcharge pressure in backside of retaining wall was evaluated. Based on the numerical analysis results, it was confirmed that when the groundwater level is at 0.1H from the ground surface (H: Excavation soil height), the wall displacement and ground settlement are not affected by the method of groundwater drawdown, regardless of soil conditions (dense or loose) and surcharge pressure. On the other hand, when the groundwater level is at 0.5H from the ground surface, the method of groundwater drawdown was found to have a significant effect on wall displacement and ground settlement. In this case, the difference in ground settlement presents by up to 4 times depending on the method of groundwater drawdown, and the surcharge load could increase the ground settlement by up to 1.5 times.

Frequency response of film casting process

  • Hyun, Jae-Chun;Lee, Joo-Sung;Jung, Hyun-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제15권2호
    • /
    • pp.91-96
    • /
    • 2003
  • The sensitivity of the product to the ongoing sinusoidal disturbances of the process has been investigated in the film casting of viscoelastic polymer fluids using frequency response analysis. As demonstrated for fiber spinning process (Jung et al., 2002; Devereux and Denn, 1994), this frequency response analysis is useful for examining the process sensitivity and the stability of extensional deformation processes including film casting. The results of the present study reveal that the amplification ratios or gains of the process/product variables such as the cross-sectional area at the take-up to disturbances exhibit resonant peaks along the frequency regime as expected for the systems having hyperbolic characteristics with spilt boundary conditions (Friedly, 1972). The effects on the sensitivity results of two important parameters of film casting, i.e., the fluid viscoelasticity and the aspect ratio of the casting equipment have been scrutinized. It turns out that depending on the extension thinning or thickening nature of the fluid, increasing viscoelasticity results in enlargement or reduction of the sensitivity, respectively. As regards the aspect ratio, it has been found that an optimum value exists making the system least sensitive. The present study also confirms that the frequency response method produces results that corroborate well those by other methods like linear stability Analysis and transient solutions response. (Iyengar and Co, 1996; Silagy et al., 1996; Lee and Hyun, 2001).

Dynamic stability analysis of laminated composite plates in thermal environments

  • Chen, Chun-Sheng;Tsai, Ting-Chiang;Chen, Wei-Ren;Wei, Ching-Long
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.57-79
    • /
    • 2013
  • This paper studies the dynamic instability of laminated composite plates under thermal and arbitrary in-plane periodic loads using first-order shear deformation plate theory. The governing partial differential equations of motion are established by a perturbation technique. Then, the Galerkin method is applied to reduce the partial differential equations to ordinary differential equations. Based on Bolotin's method, the system equations of Mathieu-type are formulated and used to determine dynamic instability regions of laminated plates in the thermal environment. The effects of temperature, layer number, modulus ratio and load parameters on the dynamic instability of laminated plates are investigated. The results reveal that static and dynamic load, layer number, modulus ratio and uniform temperature rise have a significant influence on the thermal dynamic behavior of laminated plates.

흙막이벽에 발생하는 수평변위의 현장계측과 수치해석적 접근 (Field Measurement and Numerical Approach for Lateral Deformation of Retaining Wall)

  • 도종남;류웅렬;안이환;천병식
    • 한국지반환경공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.61-68
    • /
    • 2010
  • 최근의 우리나라 지하굴착공사는 공법의 발전과 더불어 경제적인 부지활용을 위하여 대규모, 대심도화 되어가고 있는 추세이다. 굴착공사 대상은 자연상태의 지반으로 그 성상이 매우 복잡하며 다양한 특성을 지닌다. 지하굴착공사로 인하여 인접구조물에 변형을 주거나 과도한 토압으로 인한 벽체의 변형으로 흙막이벽 자체의 안정성에 심각한 문제가 생길 수 있다. 이에 흙막이 공사가 안정적으로 수행되기 위해서는 대상토질의 공학적 특성 및 지역적 특성을 충분히 고려하여 굴토계획을 수립하고 적절한 공법선정이 이루어져야 한다. 본 연구에서는 흙막이벽의 수평변위 특성을 파악하기 위하여 기 시공된 현장 사례를 통해 굴착이 진행되면서 부터 완료되기까지의 계측자료와 수치해석 결과를 비교 분석하였다. 이를 위하여 기 시공된 6개 현장의 계측데이터를 분석하였고, 탄소성보법 해석 프로그램인 SUNEX를 이용하여 변위특성을 파악하였다. 계측 및 해석결과 얕은 심도에서의 일부 변위가 제안값을 미소하게 초과하는 경향을 보였으나 대체적으로 최대수평변위가 제안값 범위 내에 있으므로 흙막이 벽체가 안정함을 알 수 있었다.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Analysis of the failure mechanism and support technology for the Dongtan deep coal roadway

  • Chen, Miao;Yang, Sheng-Qi;Zhang, Yuan-Chao;Zang, Chuan-Wei
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.401-420
    • /
    • 2016
  • The stability of deep coal roadways with large sections and thick top coal is a typical challenge in many coal mines in China. The innovative Universal Discrete Element Code (UDEC) trigon block is adopted to create a numerical model based on a case study at the Dongtan coal mine in China to better understand the failure mechanism and stability control mechanism of this kind of roadway. The failure process of an unsupported roadway is simulated, and the results suggest that the deformation of the roof is more serious than that of the sides and floor, especially in the center of the roof. The radial stress that is released is more intense than the tangential stress, while a large zone of relaxation appears around the roadway. The failure process begins from partial failure at roadway corners, and then propagates deeper into the roof and sides, finally resulting in large deformation in the roadway. A combined support system is proposed to support roadways based on an analysis of the simulation results. The numerical simulation and field monitoring suggest that the availability of this support method is feasible both in theory and practice, which can provide helpful references for research on the failure mechanisms and scientific support designing of engineering in deep coal mines.