• Title/Summary/Keyword: Stability Linear Analysis

Search Result 760, Processing Time 0.023 seconds

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip (TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계)

  • 하석흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

Geomechanical analysis of elastic parameters of the solid core of the Earth

  • Guliyev, Hatam H.
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.19-27
    • /
    • 2018
  • It follows from the basic principles of mechanics of deformable solids relating to the strength, stability and propagation of elastic waves that the Earth's inner core cannot exist in the form of a spherical structure in the assumed thermobaric conditions and calculation values of physico-mechanical parameters. Pressure level reaches a value that is significantly greater than the theoretical limit of medium strength in the model approximations at the surface of the sphere of the inner core. On the other hand, equilibrium state of the sphere is unstable on the geometric forming at much lower loads under the influence of the "dead" surface loads. In case of the action of "follower" loads, the assumed pressure value on the surface of the sphere is comparable with the value of the critical load of "internal" instability. In these cases, due to the instability of the equilibrium state, propagation of homogeneous deformations becomes uneven in the sphere. Moreover, the elastic waves with actual velocity cannot propagate in such conditions in solid medium. Violation of these fundamental conditions of mechanics required in determining the physical and mechanical properties of the medium should be taken into account in the integrated interpretations of seismic and laboratory (experimental) data. In this case, application of the linear theory of elasticity and elastic waves does not ensure the reliability of results on the structure and composition of the Earth's core despite compliance with the required integral conditions on the mass, moment of inertia and natural oscillations of the Earth.

A Study of Estimation of the Arc Stability in Short-circuition Transfer Region of GMA Welding Using Multi-layer Perceptrons (다층 신경회로망을 이용한 GMA 용접 단락이행영역에서의 아크 안정성 평가)

  • 강문진;이세헌;엄기원
    • Journal of Welding and Joining
    • /
    • v.17 no.5
    • /
    • pp.98-106
    • /
    • 1999
  • In GMAW, the spatters are generated according to the variation of the arc. Of the arc is stable, Few spatters are generated. But if unstable, too many spatters are generated. So, this means the spatters are dependent on the arc state. The aim of this study is to accurately estimate the arc state. To do this, the generated spatters were captured under the some welding conditions, and the waveforms of the arc voltage and welding current were collected. From the collected signals, the waveform factors and their standard deviations were extracted. Using these factors as input parameters of multi-layer artificial neural network, the learning for the weight of the generated spatters is performed and the estimation results to the real spatter are assessed. Obtained results are as follow: the linear correlation coefficient between the estimated result and the real spatters was 0.9986. And although the average convergence error was set 0.002, the estimated error to the real spatter was within 0.1 gr/min at each welding condition. In the estimation for the weight generated spatters, the result with multi-layer neural network was far better than with multiple regression analysis. Especially, even though under the welding condition which the arc state is unstable (the spatter is generated much more), very excellent estimation performance was shown.

  • PDF

Comparison of Overall Characteristics between an Air-Assisited Fuel Injector and a High-Pressure Swirl Injector-Part I: Flow rate and Macroscopic Spray Characteristics (공기보조 분사기와 고압 선회식 분사기의 특성 비교- Part 1:유량 및 거시적 분무특성)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.20-27
    • /
    • 2000
  • Characteristics of two favorite injection tools for gasoline direct injection application were compared. An air-assisted fuel injector (AAFI) and a high-pressure swirl injector (HPSI) were designed and fabricated for prototype development, and the characterization strategies and processes for both injection tool have been arranged in parallel. Characterization works were carried out mainly through measurements, and in some cases, computational fluid dynamic analysis was utilized. In this paper, overall characteristics defined as flow rate, spray pattern, penetration, internal spray structure and drop size distribution, was discussed. The AAFI was found to be advantageous in flexibility of fuel flow rate, and the HPSI in stability and precision. Spray shape factor was introduced to describe the development of intermittent sprays from both injectors. Axial penetration appeared to be almost linear in the case of the AAFI while its speed continuously decreased with time in the HPSI.

  • PDF

Responses of a roll-pitch coupled nonlinear system to the primary resonance of the roll mode (횡동요 모드와 주공진 된 횡-종동요연성 비선형계의 응답)

  • 오일근
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.107-115
    • /
    • 1997
  • 비성형 동력학계로 모델링된 부유수송체의 동적응답을 조사하고 그 운동의 안정성을 해석하였다. 종동요 모우드의 고유주파수가 횡동요 모우드의 고유주파수의 두배가 되는, 즉, 2:1 내부공진 혹은 자기계수공진인 조건하에서, 이부유수송체는 한 운동 모우드의 직접가진에 의해 간접가진된 다른 모우드가 대진폭 응답을 보일 수 있음을 밝혔다. 또항, 종동요 모우드의 감쇠력은 비교적 넓은 범위의 운동에 대해 선형적임에 반해, 횡동요 모우드의 감쇠력은 점성의 영향이 대단히 커서 비선형성이 대단히 강한 것으로 알려져 왔다. 이 문제를 수학적으로 모델링하기 위하여, 종동요 모우드의 운동방정식에는 선형및 제곱형의 합의 형태인 감쇠력 모형을 사용하였다. 다중척도법을 사용하여 이 두가지 운동 모우드의 주기적 응답및 그의 안정성에 미치는 제곱형 비선형 횡동요 감쇠력의 영향을 밝혔다. 조우주기가 횡동요 모우드의 고유주기와 근사한 경우에 대하여 이 비선형계의 응답을 구하고 주파수-응답 곡선으로 나타내었다.

  • PDF

A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : PART II - Field Tests and Verification of PSS Performance (대형 화력발전기 전력계통 안정화장치(IEEEST-PSS)의 정수선정 기법과 실계통 적용: PART II - PSS 현장 성능시험 절차 및 성능검증)

  • Shin, Jeong-Hoon;Nam, Su-Chul;Baek, Seung-Mook;Song, Ji-Young;Lee, Jae-Gul;Kim, Tae-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.114-121
    • /
    • 2011
  • This paper, as the second part of the paper, dealt with the field test and test results to validate PSS(Power System Stabilizer) parameters which are previously tuned in Part 1 paper. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation and system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are verified and confirmed.

Image Encryption using Cellular Automata Sequence with Two Maximum Cycle (두 개의 최대 주기를 갖는 셀룰라 오토마타 수열을 이용한 영상 암호화)

  • Nam, Tae-Hee;Cho, Sung-Jin;Kim, Seok-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1201-1208
    • /
    • 2010
  • In this paper, we propose an image encryption method using two linear MLCA(Maximum Length Cellular Automata). The encryption method first sets arbitrary 8 bit initial values. Next, we create high quality PN(pseudo noise) sequences by converting rows and columns with the set initial values. hen we generate a basis image using the set PN sequences. Lastly, the final image with high encryption level is produced by XOR operation of the basis image and the original image. In order to verify that the proposed method has the high encryption level, we performed histogram and stability analysis.

Design of Robust Voltage Controller for Single-phase UPS Inverter (단상 UPS 인버터의 강인한 전압제어기 설계)

  • Ku, Dae-Kwan;Ji, Jun-Keun;Cha, Guee-Soo;Moon, Jun-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.317-325
    • /
    • 2011
  • In this paper a robust voltage controller for a single-phase UPS inverter is newly presented. The voltage controller is designed using ${\mu}$-based robust control scheme to simultaneously guarantee robust stability and robust tracking performance in the presence of load variations. Firstly the robust performance of the resulting controller is theoretically confirmed via ${\mu}$-analysis. Then simulations and experiments for the single-phase inverter system with linear and nonlinear loads demonstrate feasibility of the proposed control method providing improved performance - good regulation and fast dynamic response.

Robust Optimal Nonlinear Control with Observer for Position Tracking of Permanent Magnet Synchronous Motors

  • Ha, Dong-Hyun;Lim, Chang-Soon;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.975-984
    • /
    • 2013
  • This paper proposes a robust optimal nonlinear control with an observer to reject the offset errors of position tracking for surface mounted permanent magnet synchronous motors. We provide the control method to reject offset errors and load torque for designing field oriented control (FOC) based the alternating current (AC) frame. The proposed method consists of a torque generator, a commutation scheme, an electrical controller, and a load torque observer. The mechanical controller is designed to compensate for load torque and the offset error and generate the desired torque. The commutation scheme is proposed to create the desired currents for the desired torque. The electrical controller is developed to guarantee the desired currents. The observer is designed to estimate both the velocity and the load torque. In order to obtain the robustness to parameter uncertainties and a gain tuning guide, the linear quadratic regulator method is applied to the proposed method. The closed-loop stability is proven. A detailed process for the FOC design and an analysis of the control methods based on the AC frame are presented. The performance of the proposed method was validated via experiments. The proposed method obtains the FOC based on the AC frame. Furthermore, the position tracking performance of the proposed method is superior to that of the conventional method.