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Responses of a Roll-Pitch Coupled Nonlinear System
to the Primary Resonance of the Roll Mode
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1. INTRODUCTION safe vessels since the extent of the motion that
a marine vehicle may experience has important
One must  understand  the  complicated consequences  on its  safety, operability, and
dynamics of a vessel moving in a general economical aspects.
environment to design more comfortable and Loss of stability due to excessive motions,
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such as heavy rolling, can happen through the
energy transfer between the modes of motion if
nonlinearities are present and various resonances
of the internal, external, or parametric type occur.
The present research is concerned with the
dynamic stability and excessive motion of a
vessel in the presence of two-to-one internal or
autoparametric resonance in which the natural
frequency in pitch is twice that in roll.

The significance of internal resonance has been
recognized recently in many mechanical and
elastic systems. There are a number of references
dealing with physical two-degree-of -freedom
systems.  Among  others, Nayfeh and Mook
discussed problems involving the forced responses
of ships, robots, elastic pendulums, beams and
plates under static loadings, composite plates,
arches, shells, and the sloshing of liquid gasoline
in the fuel container of an airplanc.’” When these
systems  possess  internal (or  autoparametric)
resonances, which may occur if the natural
frequencies of the system are commensurate, their
responses may exhibit extraordinarily complicated
behaviors, which cannot be explained by linear
formulations.

Interestingly, two-to-one autoparametric or
internal resonances may strongly influence the
dynamic behavior and stability of vessels.,” A
strong coupling of the involved modes of motion
produced by internal or autoparametric resonance
was first observed by Froude in 1863, He
observed that a vessel whose linear undamped
natural frequency in pitch is twice that in roll has
undesirable seakeeping characteristics.”  This
observation was a manifestation of the two-to-
one internal resonance whose significance cannot
be determined using linearized equations.m"“

For a century after Froude, however, no further
research on this phenomenon was pursued. In
1959, Paulling and Rosenberg studied the coupled

heave-roll motion of a vessel using a set of

—108—

nonlinear ordinary-differential equations.S) They
simplified the equations of motion and obtained a
single roll equation having the form of a simple
linear Mathieu equation which contains a
time-varying coefficient due to a simple harmonic
motion of the heave mode. This study has a
principal  shortcoming; due to the lack of
consideration for damping and nonlinear coupling
terms, the analytical model was not capable of
vielding realistic results.

To explan Froude's observation, Nayfeh,
Mook, and Marshall modeled the ship motion by
two nonlinearly coupled equations involving the
pitch and roll modes; they included the depend-
ence of the pitching moment on the roll
orientation.” They clearly showed the signific:
ance of the frequency ratio m causing undesirable
roll behaviors, such as the "saturation” phenom
enon. They offered an explanation of the obser-
vations of Froude.

In the present paper, we use a linear-
plus-quadratic damping model for the roll motion.
The linear-plus-quadratic damping model has long
been recognized by investigators to describe
closely the dissipation of energv in the roll mode.
However, it was not used so far because of some
analytical difficuities. We obtain various compli-
cated responses, which are common features of the
nonlinear dynamics of many mechanical and elastic
systems. These responses include supercritical and
subcritical instabilities, periodic  motions, and
coexistence of multiple solutions and associated
jumps. Such phenomena can never be addressed
by the linear approach because it is incapable of
representing not only the strong nonlinear
interaction between the two modes but also the

effect of the viscous damping in the roll mode.

2. EQUATIONS OF MOTION

We consider the response of a ship that is
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restricted to pitch and roll to a regular wave.
We assume that the ship is laterally symmetric.
We use the right-handed coordinate systems : a
body-fixed coordinate system oxyz such that its
origin ois at the center of mass. The x-axis is
positive toward the bow, the y-axis is positive
toward starboard, and the z-axis is positive
downward. The orientation of thé ship with
respect to an inertial frame OXYZ is defined by
0
pitch rotation about the original y-axis, and @ is
The

p and ¢ of the angular velocity

the Euler angles @ and 6 as follows: is a

a roll rotation about the new X-axis.
components
about the x- and y-axes are related to &,6, @,

and & by

p=0 and g= 6 cos D (1)

The equations of motion can be written as

Lop—1opa= K+K,cos Ot (2)

Log+1.p°= M+ M, cos(Qt+ ) 3)

where [, 1., and [, are the moments and
product of inertia, £ is the encounter frequency,
Ky and M, are the amplitudes of the moments
produced by the waves, and ris a phase; they

are assumed constants. We assume that the

hydrodynamic moments K and M are analytic
of & and 6 and their denvatives.
Nayfeh, Mook, and Marshall

including a quadratic damping term in the roll

functions

Following and

equation, we obtain
Pt wii® =e[~2p4,0—pu @1 D |
+6,06+5.040
+630D+8,0 6 +FcosQt )
5+w§0 :e[—2/136?+01®2+(13®(25
+(1362+a,1b’9’+a/5®.2+a60.2 )

+Ficos(Qi+ )]
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where & is a small dimensionless parameter
that is introduced as a bookkeeping device in the
perturbation analysis that follows.”

3. METHOD OF MULTIPLE SCALES

We use the method of multiple scales to
determine a first-order approximation to the

solutions of equations (4) and (5).”" We let

(2)([;E):QO(TUVTI)'FEwl(T().T])’+‘... (6)

0(1;6):00(T0,T1)+691(T0,T1)+... (7)

where Ty=1¢ 1s a fast time scale, charac
terizing motions on the scales @i and Q ; and
Ty= &t 1s a slow time scale, characterizing the

modulation of the amplitudes and phases of the

motion. In terms of 7T, and 7, the time
derivatives are transformed into
4 oD+ e D+ (8)
di =4y & 1 PR
; d& _
and = Dy +2e DyDy+. ..

df

where D,=d/0T,.
Substituting  equations (6)-(8) into equations
(4) and (5) and equating coefficients of like

powers of €, we obtain

O( )
Dido+ w,P@,=0 )
D6+ w.20,=0 (10
O(e )
Dyi0 + w,°0,=—-2DyD,@,—2u D0,
—usDy@y | D@y | + 6,240,
(1D

+8,0, D 0,+06,0,D/°0,

+ 8 ,1DQ®()ﬁ ()+F1COS Q T()
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DOZBI + w22¢91=-—2D0D100—2# 2D060
+a 05+ a 20,050+ @365
+a49 OD%;O()’f"05(D0®0)2+06(D060)2

+Fycos(QTy+ 1) (12)

The solutions of equations (9) and (10) can be

expressed as

fw, Ty —tw, Ty

D, =A(T)e +A{(T))e (13)

o, T,

0,=AT)e "+ A(T)e (14)

where A; and A, are unknown functions at

this level of approximation. They are determined
by

next level of approximation. Alternatively, the

imposing the solvability conditions at the

solutions of equations (13) and (14) can be
expressed as
@y=a{Tcosl o Ty+ 8 ,(T)] (15)
8y=al(Tpcosl w, Ty+ 8.(T))] (16)

where the «, and £, are the amplitudes and
phases of the roll and pitch modes. Comparing
equations (13) and (14) with equations (15) and

(16), we conclude that

ALT) =% a,(Tye P47 a7
Substituting equations (13) and (14) into
equations (11) and (12) yields

DE0 | +0i0, =20 (A +u,A)e 7

+(8 1~ whss—wis,

—w w28 DAA T (8 —wis,

~wis 3t w w,8 DAA e Heme T

+T,12- Fre T yeet+Aio Ae " —iw A T

(18)
fw, Ty

Di6 + i =~2iw(As+ prA)e
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2iw, T,
(e —wlas—wiag)AleT

P 2Hw, Ty
+(as—wia,~wiagAle ™"

+(a—wia,twia)A A (19)

+(as—wia, twlagl.A,

(QT,+ 1)
e

1
+2F2 +cc

where the prime indicates the derivative with
respect to T,, A, is the complex conjugate of
A,, and the function f accounts for the term
—u3Dy@ | Dyoy | . Depending on the functions

A,, particular solutions of equations (18) and

. . tim, I
(19) contain terms proportional to Tye
(i.e. secular terms). They also contamn
small-divisor terms if Q=w,0r Q= w. (i ¢

primary resonances of the pitch or roll mode)

and/or if wy= 2w, (the frequency of pitch

mode 1s approximately twice that of roll mode;
i.e. two-to-one internal or autoparametric
resonance).

To eliminate the secular and small-divisor

terms, we first expand ADy;®,) in a Fourier

series as
f= 3 A Ape T (20
where
_ w 2afw, —z'nmJ"m ‘
AL A =5 [ fe dT, 1)
Consequently, the component of f that
produces a secular term 1s
@y 2l —iw, T, ¢
5 fo fe " TaTy . (22)

We analyze the case of primary resonance of

the roll mode in the next Section.
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4. ANALYSIS

4.1 Modulation Equations

To express the nearness of the resonances for
the case of primary resonance of the roll mode,
we introduce two detuning parameters, o ; and
gy, defined Q= w,+ €0, and

ws=2w;+ e 0. Then, we have

Q Toz wy T0+0'2T1
(23)
a)gTD=2w1T(,+01T1
Using equations (23) and (22) to eliminate the
terms that produce secular terms from equations
(18) and (19), we obtain

20(A, +mA)—41,4,Ae”" "
R 2z fwy i To
—fie'" T = 2—1” [0 fe T dT,=0 |

(24)

2i( Ay +11:A2) —44,47e T =0, (25)

where

4(01/11:31_w§62—w%83+w1w26,1, (26)

4w2/12=al—wf(ar2+a5) . (27)

and wfi= LFI ) (28)

2

Nayfeh, Mook, and Marshall concluded that
Ay and A, have the same sign; otherwise,
the unforced ship would be self-oscillating,
which is unrealistic due to dissipation.”’

Substituting equation (17) into equations (24)
and (25) and rewriting equation (15) as

Oo=a(T)cos x 1, x1=w Ty+8,(T)) (29)

After seperating real and imaginary parts of
equations (24) and (25), using equation(29), and

evaluating the terms corresponding to the last
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term in equation (24) by replacing the function f
with — u3D,@, | Dy@y | . We obtain

1 B
anlfn sin x ¢ ( 13 Dy@ o Dy@ o ddx 30)
4
=g gy
_7,_1__A 2 x
Zray b o5 31

(— 13Dy | Dy@ gy | )dx =0

Applying the appropriate transformation of

variables, we obtain a generic system of equations

as follows:
a; =—ma +aa;siny (32)
+ fisin 73»*4%'%%” ala l‘
@y = p.as—ajsiny (33)
a1 B | =—a,a,co8 ¥, ~ F,c08 2 (34)
asB 3= —ajcos 7, (35)
where

71=01T1+/3’2*2E1and YgzdzT]—L?l (36)

and the evaluated results given in equations (30)
and (31), corresponding to the last term of

equation (24), have been used.

4.2 Fixed Points

Periodic solutions of (4) and (5) correspond to
the fixed points of equations (32)-(36). They are
obtained by setting ;= a,=0 and »,=7r,=0. It

follows from equation (36) that

Bi=¢, and B.=20,—0, (37)
Hence, the fixed points of equations (32)-(36)
are given by the solutions of the following set of

coupled nonlinear algebraic equations:
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#a,= a,a;siny; +fisiny; — ‘;; Lajial (38

/lga2=—~afsin 71 (39)
a,0:=—a,a:co08 7, — f1Cos 7> 40)
(20 ,— 0 Da=—alcos 7 41

Equations (38)-(41) can be manipulated to
vield the following polynomial equation for ai:
a?+d5a‘f lal +d,,a’=+d3af | ay |
) (42)
+doai+d | ay | +dy=0
where D; (i=0,1,...5) are constant coefficents

determined from control parameters in use, such

as oy, 0a, 41, 42, 3, 1, and wy; they are given by

dy=—AT%, (43)

d1 = 0, (44)

do= IT5, (45)
ol 4

dy =28 e, (46)

(4 2

dy = 2puaps =2, + T o ) 47)
4

d;= 2'"397% 3ty (48)

=i+, (49)

Vi = 09, (50)

and V2=20'2_0'1. (651)

We note that if p3=0, then dy=d;=0 and
dy= 285 —2vv. It follows from equations

(38)-(41) that a, is given by

as= af/F_‘ (52)

The response in this case is given by
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©=acos(Qt—7)+... (53)
=qa,c0s2Qt+7 =27 )+... (54)

The solutions of the sixth-order algebraic

equation (42) are obtained numerically. Then, a.

is calculated from equation (52). Finally, the
corresponding phases 71 and 72 (8) and £»
also) are obtained from equations (38)-(41).

4.3 Stability of Fixed Points

The stability of the fixed-point solutions are
determined by investigating the eigenvalues of
the Jacobian matrix of equations (32)-(36).

A given fixed point is asymptotically stable if
and only if all the eigenvalues lie in the left half
of the complex plane and is unstable if at least
one eigenvalue lies in the rnight half of the
complex plane. If a pairr of complex-conjugate
eigenvalues cross the imaginary axis into the
right half of the complex plane with nonzero
speed, then we have a Hopf bifurcation. Near
these bifurcation points, the response is an
amplitude- and phase-modulated combined pitch
and roll motion, with the energy being continuously

exchanged between the two modes.

5. NUMERICAL RESULTS AND
DISCUSSION

5.1 Frequency-Response Curves

The fixed-point solutions are verified by
numerically integrating the autonomous ampli-
tude-and phase-modulation equations (32)-(35)
using a bth-and 6th-order Runge-Kutta-Verner
algorithm with double precision arithmetics. We
examined bifurcations as we vary a bifurcation

parameter, such as the detuning parameter o,

or the quadratic damping coefficient g4 while
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all the other parameters (i.e., o, p, pg) are

kept constant.

a.8

Fig.l Frequency-Response Curves

(o =0)variation of roll amplitude «, for different

values of e 40 stable(-), unstable(...)

Fig.2 Frequency-Response Curves

(¢ ,=0): variation of pitch amplitude a, for different

values of g 40 stable(-), unstable(...)

In Figures 1 and 2, we show the frequency-
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response curves when pg,= p.,=0.08, ¢,=0,
and f1=0.08 for different values of uj3 The
unstable solutions are represented by broken
lines and the stable solutions are marked by
solid lines. Figures 1 and 2 show variations of
the roll amplitude ¢; and pitch amplitude . with
o, for different values of x5 As u; increases
from zero to 0.3, the reversed pitchfork
bifurcation points slightly change, whereas the
saddle-node Dbifurcation points move towards
o,=0. As p3 is increased further to 0.6 and
0.9, the saddle-node bifurcation points disappear
and the frequency-response curves become
single-valued. Consequently, the jump phenome-
non and subcritical instability disappear. More
over, the Hopf bifurcation points approach each
other as 4 Increases. For example, the Hopf
bifurcation interval —0.09995< o . <0.09995 for
5 - 0 shrinks gradually to —0.055< ¢ ,<0.055
for ;=009.

We note that for a fixed value of ¢, @, and
a» decrease as w3 increases. The curves of
unstable fixed points around the region of
perfect tuning, .=0, converge in both modes.
The introduction of quadratic damping 3, by
attaching antirolling devices like bilge Kkeels,
causes the region between the two Hopf
bifurcation frequencies to shrink. However, it
does not eliminate comphcated motions completely
in this region.

Figures 3 and 4 show the frequency-response
curves for the case in which the values of all
the parameters are the same as those in Figures
1 and 2 except that o, = 0.2. In this case, the
curves are shifted slightly to the right and the
peak amplitudes of the right branches of the roll
mode are smaller than those of the left

branches.
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Fig.3 Frequency-Response Curves
(o ,=0.2) svanation of roll amplitude a; for different

valuse of s 5 ; stable(-), unstable(...)

0.8
S0
3 o

0.0 T——

T T ————

-1.0 -0.5 0.0 0.5 1.0

02

Fig.4 Frequency-Response Curves
(0 ,=0.2) :variation of pitch amplitude a, for

different values of 5 stable(~). unstable(...)

The opposite occurs in the response of the

pitch mode. If ¢, 1s chosen to be negative, the

frequency-response curves would be shifted to
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the leftt When o,=0, the case of perfect
tuning, the curves would be symmetric with
respect to ¢, = (. The qualitative behavior of

the solutions in the three cases is the same.

5.2 Hopf Bifurcation Region

Figure 5 shows the Hopf bifurcation curves in
the parameter space o ,— o, for different values of
the quadratic damping « 3 when — = £,=0.02
and £=0.1. In the outer region, the fixed
points of the modulation equations are
asymptotically stable and hence correspond to
periodic motions. On the transition curves, a
complex conjugate pair of eigenvalues of the
Jacobian matrix cross the imaginary axis into
the right half of the complex plane with nonzero
speed.  The modulation equations  possess
limit- cycle solutions near the bifurcation curves.
Between the two curves, oscillatory  solutions,
which may be either limit cycles or chaotic
attractors, may be found.

Fig.5 Hopf Bifurcation Curves @ for different

values of x4

Figure 5 shows that the Hopf bifurcation
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curves move upward and approach each other as

the quadratic roll damping coefficient 3
increases. This implies that increasing u3

causes the disappearance of aperiodic responses.

6. SUMMARY AND CONCLUSIONS

To design more comfortable and safe vessels,
one must understand the complicated dynamics
of a vessel moving in a general environment.
Included among the important dynamic
parameters are the ratios of natural frequencies
and the nonlinear interactions among the
hydrostatic  and  hydrodynamic  forces and
moments. One of the objectives of the present
work 1s to investigate the undesirable and
potentially  dangerous charactenistics  of the
dynamics of a vessel.

It has been believed for a long time that the
linear-plus- quadratic  model could adequately
describe the hydrodynamic damping of the roll
motion. However, many investigators avoided
using this model because of the difficulties in the
analvses. In the present paper, a quadratic
nonlinear damping model is introduced into the
equation of the roll mode.

We investigated the nonlinearly coupled pitch
and roll response of a vessel in regular waves
when the natural frequency in pitch is twice that
of roll (a condition of a two-to-one internal or
autoparametric resonance). The method of
multiple scales was used to derive four
first-order = autonomous  ordinary -differential
equations for the modulation of the amplitudes
and phases of the pitch and roll modes when
either mode is excited. The modulation equations
were used to determine the influence of the
quadratic nonlinear damping on the periodic
responses and their stability.

When the encounter frequency is near the roll

natural frequency, the jump phenomenon exists
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for both zero and nonzero quadratic roll
damping. The amplitudes of both the roll mode
and the pitch mode decrease as the magnitude of
the quadratic roll damping coefficient 3
increases. In the frequency-response curves, the
overhang regions narrow down as g3 increases.

The fixed points of the modulation equations
undergo a Hopf bifurcation as one of the control
parameters, such as the encounter frequency or
excitation amplitude, is varied. Between the Hopf
bifurcation points, the response is an amplitude-
and phase-modulated motion consisting of both
the pitch and roll modes.
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