• Title/Summary/Keyword: Square cup

Search Result 99, Processing Time 0.022 seconds

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • 한상준;김영수;김형종;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.171-182
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study, which consists of the hardware to capture and to display digital images, and the software to calculate the 3D informations of grid points from two views. New or improved algorithms the mapping and establishing correspondence of grid points and elements, the camera calibration, and the subpixel measurement of grid points, are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test, the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are compared with those obtained by conventional manual methods.

Development of a Surface-Strain Measurement System Using the Image Processing Technique (화상처리법을 이용한 곡면변형률 측정 시스템의 개발)

  • Han, Sang-Jun;Kim, Yeong-Su;Kim, Hyeong-Jong;O, Su-Ik
    • Transactions of Materials Processing
    • /
    • v.7 no.6
    • /
    • pp.575-585
    • /
    • 1998
  • An automated surface-strain measuring system using the image processing technique is developed in the present study which consists of the hardware to capture and to display digital images. and the software to calculate the 3-D informations of grid points from two views. New or improved algorithms for the mapping and establishing correspondence of grid points and elements the camera calibration and the subpixel measurement of grid points are implemented. As an application of the present system the surface-strains of deformed blanks in the limitting dome height test the square cup deep-drawing and punch stretching to obtain the forming limit diagram are measured. The results are com-pared with those obtained by conventional manual methods.

  • PDF

Prediction of Anisotropy and Formability of Lithium-ion Battery Pouch Sheet using Non-quadratic Yield Function (비이차 비등방 항복함수를 이용한 리튬-이온 배터리 파우치의 이방성 및 성형성 예측)

  • J. S. Kim;C. M. Moon;H.R. Lee;M. G. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.136-144
    • /
    • 2023
  • This study analyzed the mechanical behavior of lithium-ion battery pouch material and predicted its formability. A homogenization method was used to evaluate the physical properties of the pouch, and a new hardening model was developed. The yield function for the plastic model was optimized, and the anisotropic property was determined. Also, the forming limits were measured and predicted using the M-K forming limit diagram. Finally, a square cup drawing experiment confirmed the accuracy of the measured mechanical properties and the formability calculation.

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

A study on the optimal variable transformation method to identify the correlation between ATP and APC (ATP와 APC 간의 관련성 규명을 위한 최적의 변수변환법에 관한 연구)

  • Moon, Hye-Kyung;Shin, Jae-Kyoung;Kim, Yang Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1465-1475
    • /
    • 2016
  • In order to secure safe meals, the hazards of microorganisms associated with food poisoning accident should be monitored and controlled in real situations. It is necessary to determined the correlation between existing common bacteria number (aerobic plate count; APC) and RLU (relative light unit) in cookware. In this paper, we investigate the correlation between ATP (RUL) and APC (CFU) by using three types of transform (inverse, square root, log transforms) of raw data in two steps. Among these transforms, the log transform at the first step has been found to be optimal for the data of cutting board, knife, soup bowl (stainless), and tray (carbon). The square root-inverse and the square root-square root transform at the second step have been shown to be optimal respectively for the cup and for the soup bowl (carbon) data.

Development and Performance Evaluation of Falling-type Dried-Persimmon Weight Sorting System Utilizing Load Cell

  • Lim, Jongguk;Kim, Giyoung;Mo, Changyeun;Choi, Inchul
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.327-334
    • /
    • 2015
  • Purpose: A falling-type weight sorter equipped with a load cell was developed to sort lightweight dried persimmons. The performance of the sorter was also evaluated. Methods: The electronic weight sorter for dried persimmon comprises a feeder part, a weight-measurement part, an indicator part, a carrier cup, a discharging part, and a driving part. The weight setting and zero-point adjustment are performed digitally for the convenience of users. For the experimental trials, 228 rubber-clay specimens (representative of dried persimmons) in the weight range of 24.73~99.56 g were manufactured for use in experiments to evaluate the performance of the sorter. Results: The average error of the weight measurements from three experimental trials was 1.655%, with a bias of -0.492 g, a root-mean-square error (RMSE) of ${\pm}0.808g$, and a coefficient of determination ($R^2$ ) of 0.997. Conclusions: The load-cell-based electronic dried-persimmon weight sorter developed in this study facilitates effective, precise, and convenient sorting of dried persimmons.

Evaluation of Warm Deep Drawability of Magnesium Alloy AZ31 Sheet Using Solid-Type Lubricants (고체 윤활제를 사용한 마그네슘 합금 AZ31 판재 온간 디프 드로잉의 성형성 평가)

  • Kim, H.K.;Kim, J.D.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.453-458
    • /
    • 2006
  • While the die casting has been mainly used to manufacture the magnesium alloy parts, the press forming is considered as an alternative to the die casting for saving the manufacturing cost and improving the structural strength of the magnesium alloy parts. Because the magnesium alloy has low formability at room temperature, forming at elevated temperatures is a necessary condition to obtain the required material flow for press forming. However, the elevated temperature forming does not always guarantee the sufficient formability under the dry friction condition because the surface damage such as scratch or wear may accelerate the material failure. In the present study, the solid-type lubricants such as PTFE, graphite and $MoS_2$ were tested for the square cup warm deep drawing using the magnesium alloy AZ31 sheet. The formability improvement by using the lubricant was examined by comparing the maximum deep drawing depth using the PTFE against no lubricant. The formability difference for the different lubricant was also examined based on the maximum deep drawing depth.

A Study on Wearing Conditions and Dissatisfaction with Breast Cap for Current Womens Swimsuits (여성 수영복용 브래스트캡의 착용실태 및 불만족도에 관한 연구)

  • 노정화;최혜선;도월희
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.7
    • /
    • pp.47-55
    • /
    • 2003
  • The purpose of this study was to provide information on how to improve the comfort and fit of womens swimsuits through analysis of the present wearing conditions and users complaints. In order to compile the information about dissatisfaction with the appropriateness of the fit of breast cap for swimsuits, a questionnaire was administered to 364 females (over 20 years old under 60 years old). The contents of the questionnaire consisted of questions such as the reasons for selecting to wear breast cap for swimsuits or not, size of brassiere and swimsuits, dissatisfaction with material, dissatisfaction with function of breast cap. The collected data were analyzed using the descriptive statistics value of frequencies and percentile value, mean, and so on by means of the SPSS WIN.10.0 program. The differences among age groups, body type groups by rohrer index, cup size and so on were compared using the chi-square test. Results of the survey responses about swimsuits breast caps: Most women have worn swimsuits with caps. According to the results, women who are older or overweight, or have larger breasts, or breasts which sag, as well as those who have had the experience of giving birth responded that they feel uncomfortable because of the slope of their breasts. Concerning complaints about the caps, 61% of respondents complained about the cap size and lack of correspondence with breast size, 56.8% expressed concern about the cap gap. There is significant difference in wearing reason of breast caps forswimsuits among age groups and many kinds of groups.

The effect of plastic anisotropy on wrinkling behavior of sheet metal (소성 이방성이 박판의 주름 발생에 미치는 영향)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.14-17
    • /
    • 1999
  • The wrinkling behavior of a thin sheet with perfect geometry is a kind of compressive instability. The compressive instability is influenced by many factors such as stress state mechanical properties of the sheet material geometry of the body contact conditions and plastic anisotropy. The analysis of compressive instability in plastically deforming body is difficult considering all the factors because the effects of the factors are very complex and the instability behavior may show wide variation for small deviation of the factors. In this study the bifurcation theory is introduced for the finite element analysis of puckering initiation and growth of a thin sheet with perfect geometry. All the above mentioned analysis and the post-bifurcation behavior is analyzed by introducing the branching scheme proposed by Riks. The finite element formulation is based on the incremental deformation theory and elastic-plastic material modeling. in order to investigate the effect of plastic anisotropy on the compressive instability a square plate that is subjected to compression in one direction and tension in the other direction is analyzed by the above-mentionedfinite element analysis. The critical stress ratios above which the buckling does not take place are found for various plastic anisotropic modeling method and discussed. Finally the effect of plastic anisotropy on the puckering behavior in the spherical cup deep drawing process is investigated.

  • PDF

Three dimensional multi-step inverse analysis for optimum design of initial blank in sheet metal forming (박판금속성형의 초기 블랭크 최적설계를 위한 삼차원 다단계 역해석)

  • Lee, Choong-Ho;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2055-2067
    • /
    • 1997
  • Values of process parameters in sheet metal forming can be estimated by various one-step inverse methods. One-step inverse methods based on deformation theory, however, cause some amount of error. The amount of error is generally increased as the deformation path becomes more complex. As a remedy, a new three dimensional multi-step inverse method is introduced for optimum design of blank shapes and strain distributions from desired final shapes. The approach extends a one-step inverse method to a multi-step inverse method in order to reduce the amount of error. The algorithm developed is applied to square cup drawing to confirm its validity by demonstrating reasonably accurate numerical results. Rapid calculation with this algorithm enables easy determination of an initial blank of sheet metal forming.