• Title/Summary/Keyword: Spring load

Search Result 572, Processing Time 0.025 seconds

A Study on Determination of Suspension Spring Coefficient of Electric UTV for Agricultural Use through Virtual Simulation (가상 시뮬레이션을 통한 농업용 전동 UTV의 서스펜션 스프링 계수 결정 연구)

  • Kim, Sang Cheol;Kim, Seong Hoon;Kim, Seung Wan
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.75-81
    • /
    • 2022
  • In order to respond to carbon neutrality and climate change in agriculture, agricultural machinery, which has been developed centered on internal combustion engines, needs to be converted to an electric-based technology that does not emit greenhouse gases. In this study, simulations for electric UTV suspension design were performed to reduce vibration and shock of electric UTV for agricultural use and to improve driving stability and control performance of the vehicle. The simulation was performed by dividing the tolerance load of the vehicle body and the loaded load state. The range of motion of the suspension spring of UTV is within 30% of the range of motion under condition B under tolerance, the displacement of the UTV suspension with full load is reduced from 264mm to 121mm, and the damping speed is 260mm/s to 300mm/s that it can be seen that the range of motion is within 60%. Suspension design of electric UTV for multi-purpose agricultural work is a very important factor for maintaining agricultural work ability in towing work such as tillage as well as driving and terrain adaptation. The results of this study can be usefully used to determine the spring parameters with the appropriate damping range so that the electric UTV can be used for various agricultural tasks.

Nonlinear Analysis of Precast Concrete Wall Structures (프리캐스트 콘크리트 판구조의 비선형 해석)

  • 서수연;이원호;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.189-196
    • /
    • 2000
  • The objective of this paper is to propose an analysis technique to predict the behavior of PC wall structures subjected to cyclic load. While PC wall panel is idealized by finite elements, the joints at which PC walls are connected each other are idealized by nonlinear spring elements. Axial and shear spring elements are developed for simulating shear, compression and tension behaviors of joints. The strength and stiffness of each spring elements we presented from the previous research results and incorporated into the computer program of DRAIN-2DX. The proposed analysis technique is evaluated by analyzing specimens previously tested and comparing with those. On the strength, stiffness, energy dissipation and lateral drift, analytical results show good agreements with test results. This means the proposed technique is effective to predict the response of the PC wall structures.

  • PDF

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device - (수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치-)

  • Hong, J.H.;Park, W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.4
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

Load-deflection characteristics and plastic deformation of NiTi closed coil springs (수종의 니켈-티타늄 폐쇄형 코일 스프링의 하중-변위 특성 및 소성 변형 비교)

  • Son, Ah-Young;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.5
    • /
    • pp.310-319
    • /
    • 2009
  • Objective: NiTi closed coil springs were reported to have relatively constant unloading forces. However, the characteristics of NiTi closed coil springs from various manufacturers have not been elucidated. The purpose of this study was to compare load-deflection characteristics of various NiTi closed coil springs and to find out the optimal range of extension. Methods: Seven kinds of NiTi closed coil springs from five manufacturers were tested. Load deflection curves were obtained at extension ranges from 2 mm to 30 mm. Also, springs were kept extended during a 4 week period, and then load deflection curves were obtained again. Results: Sentalloy (Tomy) and Jinsung blue (Jinsung) showed superelasticity in every extension ranges tested and showed plastic deformation of less than 1 mm. Ni-Ti (Ormco) showed superelasticity only after the springs were extended at or more than 10 mm, thereby meaning that clinicians should extend these springs at or more than 10 mm to utilize the superelasticity. Orthonol (RMO) and Nitanium (Ortho Organizers) did not show superelasticity. After 4 weeks of extension, all springs showed plastic deformation less than 1 mm when the extension was at or under 25 mm. Conclusions: The superelastic behavior of NiTi closed springs were different among various NiTi spring products, and some NiTi closed springs failed to show superelasticity.

Suppression of Load Pendulation Using Tagline Control System for Floating Crane (해상 크레인에 의해 인양되는 중량물의 거동 감쇠를 위한 Tagline 제어 시스템)

  • Ku, Nam-Kug;Cha, Ju-Hwan;Kwon, Jung-Han;Lee, Kyu-Yuel
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.527-535
    • /
    • 2009
  • This paper describes the control system to suppress the load pendulation using tagline for the floating crane. Dynamic equation of motion of the floating crane and the load is derived using Newton's 2nd law and free body model. The floating crane and the load are assumed that they move in center plane. Each rigid body has 3 DOF (surge, heave, pitch), because it moves in two directions and rotates. Then, this system, which is composed of two rigid bodies, has 6 DOF. The gravitational force, the hydrostatic force, the hydrodynamic force and the tension of the wire rope are considered as external forces, which affect to the floating crane. To suppress the pendulation of the load, the tagline, which connects between the load and the float crane, is applied to the system. The tagline is composed of the spring and the wire rope. Proportional and Derivative control is used as a linear control algorithm. The results of the numerical analysis of the 3,600 ton floating crane show that the tagline system is effective to suppress the load pendulation.

ON POSITIVENESS AND CONTRACTIVENESS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION

  • CHOI, SUNG WOO
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1225-1240
    • /
    • 2015
  • We provide a complete proof that there are no eigenvalues of the integral operator ${\mathcal{K}}_l$ outside the interval (0, 1/k). ${\mathcal{K}}_l$ arises naturally from the deflection problem of a beam with length 2l resting horizontally on an elastic foundation with spring constant k, while some vertical load is applied to the beam.

Current Control Simulation Research of Moving Coil Type Linear Oscillatory A (가동코일형 LOA 전류제어 시뮬레이션 연구)

  • Jang, S.M.;Kwon, C.;Jeong, S.S.;Lee, S.L.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.614-616
    • /
    • 2001
  • This paper describes the current control simulation of the Linear Oscillatory Actuator and then, the dynamic simulation algorithm considering the armature reaction effect. Thirdly, the control algorithm is proposed to reciprocate a load without mechanical spring at the required stroke and position.

  • PDF

Fuzzy PI with Gain Scheduling Control for a Flexible Joint Robot

  • Hidenori, Kimura;Lee, Sang-Gu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.93.2-93
    • /
    • 2001
  • This paper presents the implementation of fuzzy PI gain scheduling controller (FPICGS) for controlling flexible joint robot arms with uncertainties from time-varying load. The term FPICGS is called based on a combination of fuzzy PI control scheme with a set of rule bases. Principle of design for a FPICGS is given along with the implementation of the designed computer aided control system. The experiment reveals an effectiveness of the proposed control scheme for flexible joint robot arms driven by a DC motorhooked with a spring which both parameters are completely unknown parameters ...

  • PDF

BIFURCATION THEORY FOR A CIRCULAR ARCH SUBJECT TO NORMAL PRESSURE

  • Bang, Keumseong;Go, JaeGwi
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • The arches may buckle in a symmetrical snap-through mode or in an asymmetry bifurcation mode if the load reaches a certain value. Each bifurcation curve develops as pressure increases. The governing equation is derived according to the bending theory. The balance of forces provides a nonlinear equilibrium equation. Bifurcation theory near trivial solution of the equation is developed, and the buckling pressures are investigated for various spring constants and opening angles.

  • PDF