ON POSITIVENESS AND CONTRACTIVENESS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION

Sung Woo Chol

Abstract

We provide a complete proof that there are no eigenvalues of the integral operator \mathcal{K}_{l} outside the interval $(0,1 / k)$. \mathcal{K}_{l} arises naturally from the deflection problem of a beam with length $2 l$ resting horizontally on an elastic foundation with spring constant k, while some vertical load is applied to the beam.

1. Introduction

We consider the vertical deflection $u(x)$ of a linear-shaped beam with length $2 l>0$ resting horizontally on an elastic foundation. The beam is subject to the downward load distribution $w(x)$ applied vertically on the beam. The given elastic foundation follows Hooke's law with spring constant $k>0$, so that $k \cdot u(x)$ is the spring force distribution by the elastic foundation. Let the constants E and I be Young's modulus and the mass moment of inertia of the beam respectively, so that $E I$ is the flexural rigidity of the beam. According to the classical Euler beam theory, the resulting deflection $u(x)$ is a solution of the following fourth-order linear ODE:

$$
\begin{equation*}
E I \frac{d^{4} u(x)}{d x^{4}}+k \cdot u(x)=w(x) \tag{1}
\end{equation*}
$$

The beam deflection problem described above has been one of the cornerstones of mechanical engineering $[1,2,6,8,9,10,11,12,13,14]$. In fact, when the length of the beam is infinite, (1) with the boundary condition $\lim _{x \rightarrow \pm \infty} u(x)=\lim _{x \rightarrow \pm \infty} u^{\prime}(x)=0$ has the following closed form solution [7]:

$$
u(x)=\int_{-\infty}^{\infty} K(|x-\xi|) w(\xi) d \xi
$$

Received August 21, 2014.
2010 Mathematics Subject Classification. Primary 34L15, 47G10, 74K10.
Key words and phrases. beam, deflection, elastic foundation, integral operator, eigenvalue, L^{2}-norm.

This work was supported by Duksung Women's University 2013 Research Grant.

Here, the kernel function $K(\cdot)$ is

$$
K(y):=\frac{\alpha}{2 k} \exp \left(-\frac{\alpha}{\sqrt{2}} y\right) \sin \left(\frac{\alpha}{\sqrt{2}} y+\frac{\pi}{4}\right)
$$

where $\alpha:=\sqrt[4]{k /(E I)}$. By analyzing the integral operator \mathcal{K} defined by

$$
\mathcal{K}[u](x):=\int_{-\infty}^{\infty} K(|x-\xi|) u(\xi) d \xi
$$

Choi et al. [5] obtained an existence and uniqueness result for the solution of the following nonlinear and nonuniform generalization of (1) for infinitely long beam:

$$
\begin{equation*}
E I \frac{d^{4} u(x)}{d x^{4}}+\phi(u(x), x)=w(x) \tag{2}
\end{equation*}
$$

To deal with the more practical problem of the nonlinear and nonuniform beam deflection with a finite length $2 l>0$, it is important to analyze the integral operator \mathcal{K}_{l} defined by

$$
\mathcal{K}_{l}[u](x):=\int_{-l}^{l} K(|x-\xi|) u(\xi) d \xi
$$

Recently, Choi [3, 4] performed analysis on the eigenstructure of \mathcal{K}_{l} as a linear operator on the Hilbert space $L^{2}[-l, l]$ of the square-integrable complex functions on $[-l, l]$.

Proposition 1 ([4]). The eigenvalues of \mathcal{K}_{l} inside the real interval ($0,1 / k$) are $\mu_{1} / k>\nu_{1} / k>\mu_{2} / k>\nu_{2} / k>\cdots \searrow 0$, and $\mu_{n} \sim \nu_{n} \sim n^{-4}$ as $n \rightarrow \infty$.

Since the operator \mathcal{K}_{l} is self-adjoint, all of its eigenvalues are real. In fact, it is shown in [3] that 0 and $1 / k$ are not eigenvalues of \mathcal{K}_{l}. About the eigenvalues of \mathcal{K}_{l} in $(-\infty, 0) \cup(1 / k, \infty)$, they obtained a characteristic equation in terms of specific functions $\psi_{L}(\kappa)$ and $q(\kappa)$ defined in Section 2.

Proposition $2([3]) . \lambda \in(-\infty, 0) \cup(1 / k, \infty)$ is an eigenvalue of \mathcal{K}_{l} if and only if $\psi_{L}(\kappa)=q(\kappa)$, where $\kappa=\sqrt[4]{1-1 /(\lambda k)}>0$ and $L=2 \sqrt{2} l \alpha$.

In this paper, we provide a complete proof of the fact

$$
\begin{equation*}
\psi_{L}(\kappa)>q(\kappa) \quad \text { for every } \kappa>0 \text { and for every } L>0 \tag{3}
\end{equation*}
$$

from which the following result follows immediately by Proposition 2.
Theorem 1. There are no eigenvalues of the operator \mathcal{K}_{l} outside the interval ($0,1 / k$).

Theorem 1 implies that the operator \mathcal{K}_{l} is positive and contractive in dimen-sion-free sense, which is relevant to the existence and the uniqueness of the solution to the nonlinear and nonuniform problem (2). We remark that the proof of Lemma 3.2 in [3], which also asserts (3), was incomplete in that it only amounts to showing that $\psi_{L}(\kappa)>q(\kappa)$ for every sufficiently small $\kappa>0$
for every $L>0$, which is indeed far from complete. However, our proof of (3) indicates that the conclusions of [3], including Lemma 3.2, Theorems 4.1 and 4.2 therein, remain unchanged.

2. Preliminaries

For $\kappa \geq 0$, define

$$
\begin{align*}
q(\kappa) & =\frac{(\kappa-1)^{2}}{(\kappa+1)^{2}} \tag{4}\\
\psi_{L}(\kappa) & =e^{L \kappa} \cdot f\left(\cos g_{L}(\kappa)\right), \tag{5}
\end{align*}
$$

where

$$
\begin{equation*}
f(t)=(2-t)-\sqrt{(2-t)^{2}-1} \tag{6}
\end{equation*}
$$

Here, $L:=2 \sqrt{2} l \alpha, l, \alpha$ are positive constants, and the function g_{L}, parametrized by $L>0$, is one-to-one and onto from $[0, \infty)$ to $[0, \infty)$ with $g_{L}(0)=0$. Specifically, g_{L}, which was denoted by g in [3], is defined as follows:

$$
\begin{equation*}
g_{L}(\kappa)=L \kappa-\hat{g}(\kappa), \tag{7}
\end{equation*}
$$

where

$$
\hat{g}(\kappa)= \begin{cases}\arctan \left\{\frac{4 \kappa\left(\kappa^{2}-1\right)}{\kappa^{4}-6 \kappa^{2}+1}\right\} & \text { if } 0 \leq \kappa<\sqrt{2}-1, \tag{8}\\ -\frac{\pi}{2} & \text { if } \kappa=\sqrt{2}-1 \\ -\pi+\arctan \left\{\frac{4 \kappa\left(\kappa^{2}-1\right)}{\kappa^{4}-6 \kappa^{2}+1}\right\} & \text { if } \sqrt{2}-1<\kappa<\sqrt{2}+1 \\ -\frac{3 \pi}{2} & \text { if } \kappa=\sqrt{2}+1 \\ -2 \pi+\arctan \left\{\frac{4 \kappa\left(\kappa^{2}-1\right)}{\kappa^{4}-6 \kappa^{2}+1}\right\} & \text { if } \kappa>\sqrt{2}+1\end{cases}
$$

Here, the branch of \arctan is taken such that $\arctan (0)=0$. As is shown in [3], \hat{g} is continuous and differentiable on $[0, \infty)$, and is strictly decreasing from $\hat{g}(0)=0$ to $\lim _{\kappa \rightarrow \infty} \hat{g}(\kappa)=-2 \pi$. In fact, we have [3, pp. 43-44]

$$
\begin{align*}
\hat{g}^{\prime}(\kappa) & =-\frac{4}{\kappa^{2}+1}, \tag{9}\\
g_{L}^{\prime}(\kappa) & =L+\frac{4}{\kappa^{2}+1} . \tag{10}
\end{align*}
$$

The inverse g_{L}^{-1} of g_{L} is differentiable, and is one-to-one and onto from $[0, \infty)$ to $[0, \infty)$ with $g_{L}^{-1}(0)=0$.

Note that the function q is differentiable. The function ψ_{L} is continuous, but is only piecewise differentiable. (See Lemma 2(a) and its proof below.) The following observation, which is immediate from the intermediate value theorem and the mean value theorem, plays a key role in our proof of (3), and hence Theorem 1.

Proposition 3. Suppose ξ and η are continuous and piecewise differentiable functions on $[a, b]$ satisfying $\xi(a) \geq \eta(a)$ and $\xi(b) \geq \eta(b)$, and possible discontinuities of ξ^{\prime} and η^{\prime} are discrete. Suppose the equation $\xi(\kappa) \leq \eta(\kappa)$ has a solution in (a, b), and ξ and η are differentiable at every such solution. Then there exists κ_{0} in (a, b) such that $\xi\left(\kappa_{0}\right) \leq \eta\left(\kappa_{0}\right)$ and $\xi^{\prime}\left(\kappa_{0}\right)=\eta^{\prime}\left(\kappa_{0}\right)$.

3. The functions ψ_{L} and q

We first examine properties of the functions ψ_{L} and q. From (4), we have

$$
\begin{align*}
q^{\prime}(\kappa) & =\left\{\frac{(\kappa-1)^{2}}{(\kappa+1)^{2}}\right\}^{\prime}=\frac{2(\kappa-1) \cdot(\kappa+1)^{2}-(\kappa-1)^{2} \cdot 2(\kappa+1)}{(\kappa+1)^{4}} \\
& =\frac{2(\kappa-1)\{(\kappa+1)-(\kappa-1)\}}{(\kappa+1)^{3}}=\frac{4(\kappa-1)}{(\kappa+1)^{3}} \tag{11}
\end{align*}
$$

The properties of the function $q(\kappa)$ that we need, are summarized in Lemma 1, whose proof is immediate from (4) and (11).

Lemma 1. q is strictly decreasing on $[0,1]$ from $q(0)=1$ to $q(1)=0$, and strictly increasing on $[1, \infty)$ approaching 1. In particular, $0 \leq q(\kappa)<1$ for $\kappa>0$.

Note that the function f in (6) is continuous and positive. It is differentiable except at $t=1$. In fact, we have

$$
\begin{align*}
f^{\prime}(t) & =-1-\frac{2(2-t) \cdot(-1)}{2 \sqrt{(2-t)^{2}-1}}=-1+\frac{2-t}{\sqrt{(2-t)^{2}-1}}=\frac{f(t)}{\sqrt{(2-t)^{2}-1}} \tag{12}\\
& \geq 0,
\end{align*}
$$

and hence f is increasing. It follows that

$$
\begin{equation*}
0<3-2 \sqrt{2} \leq f\left(\cos g_{L}(\kappa)\right) \leq 1 \quad \text { for } \kappa>0 \tag{13}
\end{equation*}
$$

since $-1 \leq \cos g_{L}(\kappa) \leq 1$ and $f(-1)=3-2 \sqrt{2}, f(1)=1$. So $\psi_{L}(\kappa)=$ $e^{L \kappa} f(\cos \kappa) \geq(3-2 \sqrt{2}) e^{L \kappa}$, and hence we have

$$
\begin{align*}
& \psi_{L}(\kappa)>0 \quad \text { for } \kappa>0, L>0 \tag{14}\\
& \lim _{\kappa \rightarrow \infty} \psi_{L}(\kappa)=\infty \quad \text { for } L>0 . \tag{15}
\end{align*}
$$

By (12), we have

$$
\begin{aligned}
\psi_{L}{ }^{\prime}(\kappa) & =e^{L \kappa}\left\{L \cdot f\left(\cos g_{L}(\kappa)\right)+f^{\prime}\left(\cos g_{L}(\kappa)\right) \cdot\left(-\sin g_{L}(\kappa)\right) \cdot g_{L}{ }^{\prime}(\kappa)\right\} \\
& =e^{L \kappa}\left[L \cdot f\left(\cos g_{L}(\kappa)\right)+\frac{f\left(\cos g_{L}(\kappa)\right) \cdot\left(-\sin g_{L}(\kappa)\right) \cdot g_{L}{ }^{\prime}(\kappa)}{\sqrt{\left(2-\cos g_{L}(\kappa)\right)^{2}-1}}\right] \\
& =\psi_{L}(\kappa)\left\{L-\frac{\sin g_{L}(\kappa)}{\sqrt{\left(2-\cos g_{L}(\kappa)\right)^{2}-1}} \cdot g_{L}{ }^{\prime}(\kappa)\right\} .
\end{aligned}
$$

Using the identity

$$
\begin{equation*}
(2-\cos t)^{2}-1=\cos ^{2} t-4 \cos t+3=(1-\cos t)(3-\cos t), \tag{17}
\end{equation*}
$$

we have

$$
\begin{align*}
\lim _{t \rightarrow 0 \pm} \frac{\sin t}{\sqrt{(2-\cos t)^{2}-1}} & =\lim _{t \rightarrow 0 \pm} \frac{ \pm \sqrt{(1-\cos t)(1+\cos t)}}{\sqrt{(1-\cos t)(3-\cos t)}} \\
& = \pm \lim _{t \rightarrow 0 \pm} \frac{\sqrt{(1+\cos t)}}{\sqrt{(3-\cos t)}}= \pm 1 \tag{18}
\end{align*}
$$

Since

$$
\begin{aligned}
\left(\frac{\sin t}{\sqrt{(2-\cos t)^{2}-1}}\right)^{\prime} & =\frac{\cos t \cdot \sqrt{(2-\cos t)^{2}-1}-\sin t \cdot \frac{2(2-\cos t) \cdot \sin t}{2 \sqrt{(2-\cos t)^{2}-1}}}{(2-\cos t)^{2}-1} \\
& =\frac{\cos t \cdot\left\{(2-\cos t)^{2}-1\right\}-\left(1-\cos ^{2} t\right)(2-\cos t)}{\sqrt{(2-\cos t)^{2}-1}} \\
& =\frac{-2 \cos ^{2} t+4 \cos t-2}{\sqrt{(2-\cos t)^{2}-1}}=-\frac{2(1-\cos t)^{2}}{{\sqrt{(2-\cos t)^{2}-1}}^{3}} \leq 0
\end{aligned}
$$

the periodic function $\sin t / \sqrt{(2-\cos t)^{2}-1}$ is strictly decreasing on $(0,2 \pi)$, and hence, together with (18), we have

$$
\begin{equation*}
-1 \leq \frac{\sin t}{\sqrt{(2-\cos t)^{2}-1}} \leq 1 \tag{19}
\end{equation*}
$$

Lemma 2. (a) ψ_{L} is differentiable at every $\kappa>0$ such that $\psi_{L}(\kappa) \leq q(\kappa)$.
(b) $\psi_{L}{ }^{\prime}(\kappa) \geq-\psi_{L}(\kappa) \cdot 4 /\left(\kappa^{2}+1\right)$ for every $\kappa>0$ where ψ_{L} is differentiable.

Proof. Let $\kappa>0$. By (16), ψ_{L} is differentiable except at $g_{L}^{-1}(2 \pi n)$ for $n=$ $1,2,3, \ldots$ For $n=1,2,3, \ldots, \psi_{L}\left(g_{L}^{-1}(2 \pi n)\right)=e^{L \cdot g_{L}^{-1}(2 \pi n)} \cdot f(2 \pi n)=e^{L \cdot g_{L}^{-1}(2 \pi n)}$ >1 by (5) and (6), and $q\left(g_{L}^{-1}(2 \pi n)\right)<1$ by Lemma 1 . So $\psi_{L}\left(g_{L}^{-1}(2 \pi n)\right)>$ $q\left(g_{L}^{-1}(2 \pi n)\right)$ for $n=1,2,3, \ldots$, which shows (a).

By (16), (19), we have $\psi_{L}{ }^{\prime}(\kappa) \geq \psi_{L}(\kappa) \cdot\left\{L-g_{L}{ }^{\prime}(\kappa)\right\}$, since $\psi_{L}(\kappa)>0$ by (14) and $g_{L}{ }^{\prime}(\kappa)>0$ by (10). Hence (b) follows from (10).

4. Proof of the main result

In proving (3), we will divide the cases into the following: (i) When $0<\kappa \leq$ 1 , and (ii) when $\kappa>1$. The former case is settled with Lemma 3 below.

Lemma 3. If $0<\kappa \leq 1$, then $\psi_{L}(\kappa)>q(\kappa)$ for every $L>0$.

Proof. Note first that $\psi_{L}(1)>0=q(1)$ by (4) and (14). So (3) holds when $\kappa=1$. Note also that $\psi_{L}(0)=1=q(0)$ by (4) and (5). Suppose (3) is not true for $0<\kappa<1$, so that there exists a solution of the equation $\psi_{L}(\kappa) \leq q(\kappa)$ in $(0,1)$ for some $L>0$. By Lemma $2(\mathrm{a}), \psi_{L}$ and q are differentiable at every such solution. Thus we can apply Proposition 3 to ψ_{L} and q on $[0,1]$, so that there exists κ_{0} in $(0,1)$ satisfying $\psi_{L}\left(\kappa_{0}\right) \leq q\left(\kappa_{0}\right), \psi_{L}{ }^{\prime}\left(\kappa_{0}\right)=q^{\prime}\left(\kappa_{0}\right)$. So by (14) and Lemma 2(b), we have

$$
q^{\prime}\left(\kappa_{0}\right)=\psi_{L}{ }^{\prime}\left(\kappa_{0}\right) \geq-\psi_{L}\left(\kappa_{0}\right) \cdot \frac{4}{\kappa_{0}^{2}+1} \geq-q\left(\kappa_{0}\right) \cdot \frac{4}{\kappa_{0}^{2}+1}
$$

and hence by (4) and (11),

$$
\frac{4\left(\kappa_{0}-1\right)}{\left(\kappa_{0}+1\right)^{3}} \geq-\frac{\left(\kappa_{0}-1\right)^{2}}{\left(\kappa_{0}+1\right)^{2}} \cdot \frac{4}{\kappa_{0}^{2}+1}
$$

Since $0<\kappa_{0}<1$, this is equivalent to $\kappa_{0}^{2}+1 \leq-\left(\kappa_{0}^{2}-1\right)$, or $\kappa_{0}^{2} \leq 0$, which implies $\kappa_{0}=0$. This is a contradiction, and so we conclude $\psi_{L}(\kappa)>q(\kappa)$ for every $0<\kappa \leq 1$.

For the rest of the paper, we will deal with the case $\kappa>1$. The next result shows the nature of the equation $\psi_{L}(\kappa) \leq q(\kappa)$ with respect to L.
Lemma 4. Suppose the equation $\psi_{L_{0}}(\kappa) \leq q(\kappa)$ has a positive solution for some $L_{0}>0$. Then, for each L with $0<L \leq L_{0}$, there exists $\kappa_{L}>1$ such that $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ and $\psi_{L}{ }^{\prime}\left(\kappa_{L}\right)=q^{\prime}\left(\kappa_{L}\right)$.

Proof. Suppose the equation $\psi_{L_{0}}(\kappa) \leq q(\kappa)$ has a solution $\kappa_{0}>0$ for some $L_{0}>0$. Note that $\kappa_{0}>1$ by Lemma 3. From (7), we have $\partial g_{L}(\kappa) / \partial L=\kappa$. So from (5) and (12), we have

$$
\begin{aligned}
\frac{\partial \psi_{L}(\kappa)}{\partial L} & =\frac{\partial}{\partial L}\left\{e^{L \kappa} \cdot f\left(\cos g_{L}(\kappa)\right)\right\} \\
& =\kappa e^{L \kappa} \cdot f\left(\cos g_{L}(\kappa)\right)+e^{L \kappa} \cdot f^{\prime}\left(\cos g_{L}(\kappa)\right) \cdot\left(-\sin g_{L}(\kappa)\right) \cdot \frac{\partial g_{L}(\kappa)}{\partial L} \\
& =\kappa \cdot e^{L \kappa} f\left(\cos g_{L}(\kappa)\right)-e^{L \kappa} \cdot \frac{f\left(\cos g_{L}(\kappa)\right) \sin g_{L}(\kappa)}{\sqrt{\left(2-\cos g_{L}(\kappa)\right)^{2}-1}} \cdot \kappa \\
& =\kappa \cdot \psi_{L}(\kappa)\left\{1-\frac{\sin g_{L}(\kappa)}{\sqrt{\left(2-\cos g_{L}(\kappa)\right)^{2}-1}}\right\} \geq 0,
\end{aligned}
$$

where we used (14) and (19) for the last inequality. Thus $\psi_{L}\left(\kappa_{0}\right)$ is increasing with respect to L, and hence $\psi_{L}\left(\kappa_{0}\right) \leq \psi_{L_{0}}\left(\kappa_{0}\right) \leq q\left(\kappa_{0}\right)$ for every L such that $0<L<L_{0}$.

Note that $\psi_{L}(1)>0=q(1)$ for every $L>0$. Since $\lim _{\kappa \rightarrow \infty} q(\kappa)=1$ by Lemma 1 and $\lim _{\kappa \rightarrow \infty} \psi_{L}(\kappa)=\infty$ by (15), there exists $b_{L}>x_{0}>1$ such that $\psi_{L}\left(b_{L}\right)>q\left(b_{L}\right)$ for each $L>0$. By Lemma 2(a), ψ_{L} and q are differentiable at every $\kappa \in\left(1, b_{L}\right)$ such that $\psi_{L}(\kappa) \leq q(\kappa)$. Thus, for each L
such that $0<L<L_{0}$, we can apply Proposition 3 to ψ_{L} and q on $\left[1, b_{L}\right]$, so that there exists $\kappa_{L} \in\left(1, b_{L}\right) \subset(1, \infty)$ satisfying $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ and $\psi_{L}{ }^{\prime}\left(\kappa_{L}\right)=q^{\prime}\left(\kappa_{L}\right)$.

Lemma 5. Suppose $\psi_{L}(\kappa) \leq q(\kappa)$ for some $\kappa>0$ and $L>0$. Then $\kappa>$ $1+\sqrt{2}$.

Proof. For $L>0$, the condition $\psi_{L}(\kappa) \leq q(\kappa)$ implies

$$
\frac{(\kappa-1)^{2}}{(\kappa+1)^{2}} \geq e^{L \kappa} f\left(\cos g_{L}(\kappa)\right) \geq e^{L \kappa}(3-2 \sqrt{2})>3-2 \sqrt{2}
$$

by (4), (5), (13), and hence

$$
\begin{aligned}
0 & <(\kappa-1)^{2}-(3-2 \sqrt{2})(\kappa+1)^{2} \\
& =(2 \sqrt{2}-2) \kappa^{2}-2(4-2 \sqrt{2}) \kappa+(2 \sqrt{2}-2) \\
& =(2 \sqrt{2}-2)\left\{\kappa^{2}-2 \sqrt{2} \kappa+1\right\} \\
& =(2 \sqrt{2}-2)\{\kappa-(\sqrt{2}-1)\}\{\kappa-(\sqrt{2}+1)\} .
\end{aligned}
$$

So we have $\kappa<\sqrt{2}-1$ or $\kappa>\sqrt{2}+1$. It follows that $\kappa>\sqrt{2}+1$, since $\kappa>1$ by Lemma 3 .

In view of Lemma 4, it is legitimate to consider the behavior of (hypothetical) κ_{L}, as $L \searrow 0$.

Lemma 6. Suppose $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ and $\psi_{L}^{\prime}\left(\kappa_{L}\right)=q^{\prime}\left(\kappa_{L}\right)$ with $\kappa_{L}>0$. Then $\lim _{L \rightarrow 0+} \kappa_{L}=\infty$.

Proof. Note first that $\kappa_{L}>1$ by Lemma 3. From the assumption $\psi_{L}{ }^{\prime}\left(\kappa_{L}\right)=$ $q^{\prime}\left(\kappa_{L}\right)$ and (16), we have

$$
q^{\prime}\left(\kappa_{L}\right)=\psi_{L}^{\prime}\left(\kappa_{L}\right)=\psi_{L}\left(\kappa_{L}\right)\left\{L-\frac{\sin g_{L}\left(\kappa_{L}\right)}{\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}} \cdot g_{L}^{\prime}\left(\kappa_{L}\right)\right\}
$$

Since $q^{\prime}\left(\kappa_{L}\right)>0$ by (11) and $\psi_{L}\left(\kappa_{L}\right)>0$ by (14), we have

$$
L-\frac{\sin g_{L}\left(\kappa_{L}\right)}{\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}} \cdot g_{L}^{\prime}\left(\kappa_{L}\right)>0
$$

and hence

$$
q^{\prime}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)\left\{L-\frac{\sin g_{L}\left(\kappa_{L}\right)}{\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}} \cdot g_{L}^{\prime}\left(\kappa_{L}\right)\right\}
$$

by the assumption $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$. So by (4), (11), we have

$$
\frac{4}{\kappa_{L}^{2}-1}=\frac{q^{\prime}\left(\kappa_{L}\right)}{q\left(\kappa_{L}\right)} \leq L-\frac{\sin g_{L}\left(\kappa_{L}\right)}{\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}} \cdot g_{L}^{\prime}\left(\kappa_{L}\right)
$$

and hence

$$
\begin{equation*}
g_{L}{ }^{\prime}\left(\kappa_{L}\right) \sin g_{L}\left(\kappa_{L}\right) \leq\left(L-\frac{4}{\kappa_{L}^{2}-1}\right) \sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1} . \tag{20}
\end{equation*}
$$

If $L-\frac{4}{\kappa_{L}^{2}-1} \geq 0$, which is equivalent to $\kappa_{L} \geq \sqrt{1+\frac{4}{L}}$, then $\lim _{L \rightarrow 0+} \kappa_{L} \geq$ $\lim _{L \rightarrow 0+} \sqrt{1+\frac{4}{L}}=\infty$, and hence we have $\lim _{L \rightarrow 0+} \kappa_{L}=\infty$. So we assume $L-\frac{4}{\kappa^{2}-1}<0$ for the rest of the proof. Then the right side, and hence the left side as well, of (20) becomes negative. By squaring the both nonnegative sides of

$$
-g_{L}^{\prime}\left(\kappa_{L}\right) \sin g_{L}\left(\kappa_{L}\right) \geq-\left(L-\frac{4}{\kappa_{L}^{2}-1}\right) \sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}
$$

we have

$$
\begin{aligned}
& \left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}\left(1-\cos ^{2} g_{L}\left(\kappa_{L}\right)\right) \\
\geq & \left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}\left\{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1\right\} \\
= & \left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}\left\{\cos ^{2} g_{L}\left(\kappa_{L}\right)-4 \cos g_{L}\left(\kappa_{L}\right)+3\right\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
0 \geq & \left\{\left\{g_{L}{ }^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}\right\} \cos ^{2} g_{L}\left(\kappa_{L}\right) \\
& -4\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2} \cos g_{L}\left(\kappa_{L}\right)+\left\{3\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}-\left\{g_{L}{ }^{\prime}\left(\kappa_{L}\right)\right\}^{2}\right\}
\end{aligned}
$$

So we have $\alpha \leq \cos g_{L}\left(\kappa_{L}\right) \leq \beta$, where α, β are (interchangeably)

$$
\begin{aligned}
& \frac{1}{\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}\left[2\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2} \pm\left\{4\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{4}\right.\right. \\
& \left.\left.-\left\{\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}\right\}\left\{3\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}-\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}\right\}\right\}^{\frac{1}{2}}\right] \\
& =\frac{2\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2} \pm\left|\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}-\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}\right|}{\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}
\end{aligned}
$$

$$
=1, \frac{-\left\{g_{L}{ }^{\prime}\left(\kappa_{L}\right)\right\}^{2}+3\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}{\left\{g_{L}{ }^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}
$$

Note that $\cos g_{L}\left(\kappa_{L}\right)<1$ by Lemma 2(a) and its proof. Thus we must have

$$
\frac{-\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}+3\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}{\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}+\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}}<1
$$

which is equivalent to

$$
\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)^{2}<\left\{g_{L}^{\prime}\left(\kappa_{L}\right)\right\}^{2}=\left(L+\frac{4}{\kappa_{L}^{2}+1}\right)^{2}
$$

by (10). Since we assumed that $L-4 /\left(\kappa_{L}^{2}-1\right)<0$, we have

$$
-\left(L-\frac{4}{\kappa_{L}^{2}-1}\right)<L+\frac{4}{\kappa_{L}^{2}+1}
$$

and hence

$$
L>\frac{1}{2}\left(\frac{4}{\kappa_{L}^{2}-1}-\frac{4}{\kappa_{L}^{2}+1}\right)=\frac{4}{\kappa_{L}^{4}-1}
$$

which is equivalent to $\kappa_{L}>\sqrt[4]{1+\frac{4}{L}}$. So $\lim _{L \rightarrow 0+} \kappa_{L} \geq \lim _{L \rightarrow 0+} \sqrt[4]{1+\frac{4}{L}}=\infty$. Thus we have $\lim _{L \rightarrow 0+} \kappa_{L}=\infty$, and the proof is complete.

Lemma 7. Suppose $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ and $\psi_{L}{ }^{\prime}\left(\kappa_{L}\right)=q^{\prime}\left(\kappa_{L}\right)$ with $\kappa_{L}>0$. Then $g_{L}\left(\kappa_{L}\right)<2 \pi$ and $\lim _{L \rightarrow 0+} g_{L}\left(\kappa_{L}\right)=2 \pi$.
Proof. From the assumption $\psi_{L}\left(\kappa_{L}\right)=e^{L \kappa_{L}} \cdot f\left(\cos g_{L}\left(\kappa_{L}\right)\right) \leq q\left(\kappa_{L}\right)$, we have

$$
\begin{aligned}
\frac{e^{L \kappa_{L}}}{q\left(\kappa_{L}\right)} & \leq \frac{1}{f\left(\cos g_{L}\left(\kappa_{L}\right)\right)}=\frac{1}{2-\cos g_{L}\left(\kappa_{L}\right)-\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}} \\
& =2-\cos g_{L}\left(\kappa_{L}\right)+\sqrt{\left(2-\cos g_{L}\left(\kappa_{L}\right)\right)^{2}-1}
\end{aligned}
$$

Since $\cos t=\cos (t-2 \pi) \geq 1-(t-2 \pi)^{2} / 2$, we have $2-\cos t \leq 2-\left\{1-(t-2 \pi)^{2} / 2\right\}$ $=1+(t-2 \pi)^{2} / 2$, and hence

$$
\begin{aligned}
2-\cos t+\sqrt{(2-\cos t)^{2}-1} & \leq 1+\frac{(t-2 \pi)^{2}}{2}+\sqrt{\left\{1+\frac{\left.(t-2 \pi)^{2}\right\}^{2}}{2}-1\right.} \\
& =1+\frac{(t-2 \pi)^{2}}{2}+\sqrt{(t-2 \pi)^{2}+\frac{(t-2 \pi)^{4}}{4}} \\
& =1+\frac{(t-2 \pi)^{2}}{2}+|t-2 \pi| \sqrt{1+\frac{(t-2 \pi)^{2}}{4}} \\
& \leq 1+\frac{(t-2 \pi)^{2}}{2}+|t-2 \pi|\left\{1+\frac{(t-2 \pi)^{2}}{8}\right\}
\end{aligned}
$$

$$
=1+|t-2 \pi|+\frac{|t-2 \pi|^{2}}{2}+\frac{|t-2 \pi|^{3}}{8}
$$

for every $t \in \mathbb{R}$, where we used the inequality $\sqrt{1+x^{2} / 4} \leq 1+x^{2} / 8$ for the second inequality. So we have

$$
\frac{e^{L \kappa_{L}}}{q\left(\kappa_{L}\right)} \leq 1+\left|g_{L}\left(\kappa_{L}\right)-2 \pi\right|+\frac{1}{2}\left|g_{L}\left(\kappa_{L}\right)-2 \pi\right|^{2}+\frac{1}{8}\left|g_{L}\left(\kappa_{L}\right)-2 \pi\right|^{3} .
$$

Note that, since $\kappa_{L}>1+\sqrt{2}$ by Lemma 5 ,

$$
\begin{equation*}
g_{L}\left(\kappa_{L}\right)-2 \pi=L \kappa_{L}-\hat{g}\left(\kappa_{L}\right)-2 \pi=L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1} \tag{21}
\end{equation*}
$$

by (7) and (8). So from the inequality $e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ for $x>0$, we have

$$
\begin{aligned}
& \frac{1}{q\left(\kappa_{L}\right)}\left\{1+L \kappa_{L}+\frac{1}{2}\left(L \kappa_{L}\right)^{2}+\frac{1}{6}\left(L \kappa_{L}\right)^{3}\right\} \\
< & 1+\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right|+\frac{1}{2}\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right|^{2} \\
& +\frac{1}{8}\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right|^{3},
\end{aligned}
$$

or equivalently,

$$
\begin{align*}
& \quad 24+24 L \kappa_{L}+12\left(L \kappa_{L}\right)^{2}+4\left(L \kappa_{L}\right)^{3} \\
& <24 q\left(\kappa_{L}\right)+24 q\left(\kappa_{L}\right)\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right| \\
& \quad+12 q\left(\kappa_{L}\right)\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right|^{2} \\
& \quad+3 q\left(\kappa_{L}\right)\left|L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right|^{3} \tag{22}
\end{align*}
$$

Suppose

$$
L \kappa_{L} \geq \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}
$$

Then (22) becomes

$$
\begin{aligned}
0> & \left\{4-3 q\left(\kappa_{L}\right)\right\}\left(L \kappa_{L}\right)^{3} \\
& +\left\{12+9 q\left(\kappa_{L}\right) \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-12 q\left(\kappa_{L}\right)\right\}\left(L \kappa_{L}\right)^{2} \\
& +\left\{24-9 q\left(\kappa_{L}\right) \arctan ^{2} \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+24 q\left(\kappa_{L}\right) \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-24 q\left(\kappa_{L}\right)\right\} L \kappa_{L} \\
& +\left\{24+3 q\left(\kappa_{L}\right) \arctan ^{3} \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-12 q\left(\kappa_{L}\right) \arctan ^{2} \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right. \\
& \\
& \left.+24 q\left(\kappa_{L}\right) \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-24 q\left(\kappa_{L}\right)\right\}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(L \kappa_{L}\right)^{3}+a\left(L \kappa_{L}\right)^{2}+b L \kappa_{L}+c<0 \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
a= & \frac{12\left\{1-q\left(\kappa_{L}\right)\right\}}{4-3 q\left(\kappa_{L}\right)}+\frac{9 q\left(\kappa_{L}\right)}{4-3 q\left(\kappa_{L}\right)} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}, \\
b= & \frac{24\left\{1-q\left(\kappa_{L}\right)\right\}}{4-3 q\left(\kappa_{L}\right)}-\frac{q\left(\kappa_{L}\right)}{4-3 q\left(\kappa_{L}\right)} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1} \\
& \cdot\left\{9 \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-24\right\}, \\
c= & \frac{24\left\{1-q\left(\kappa_{L}\right)\right\}}{4-3 q\left(\kappa_{L}\right)}+\frac{3 q\left(\kappa_{L}\right)}{4-3 q\left(\kappa_{L}\right)} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1} \\
& \cdot\left\{\arctan ^{2} \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}-4 \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}+8\right\} .
\end{aligned}
$$

Since $\kappa_{L}>1+\sqrt{2}$ and

$$
\begin{aligned}
\kappa^{4}-6 \kappa^{2}+1 & =\left(\kappa^{2}-1\right)^{2}-4 \kappa^{2}=\left(\kappa^{2}+2 \kappa-1\right)\left(\kappa^{2}-2 \kappa-1\right) \\
& =(\kappa+1+\sqrt{2})(\kappa+1-\sqrt{2})(\kappa-1+\sqrt{2})(\kappa-1-\sqrt{2})
\end{aligned}
$$

we have $4 \kappa_{L}\left(\kappa_{L}^{2}-1\right) /\left(\kappa_{L}^{4}-6 \kappa_{L}^{2}+1\right)>0$, and hence

$$
0<\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}<\frac{\pi}{2} \approx 1.5708
$$

Again since $\kappa_{L}>1+\sqrt{2}$, we have $0<q\left(\kappa_{L}\right)<1$ by Lemma 1 , and hence

$$
\frac{1-q\left(\kappa_{L}\right)}{4-3 q\left(\kappa_{L}\right)}>0, \quad \frac{q\left(\kappa_{L}\right)}{4-3 q\left(\kappa_{L}\right)}>0
$$

It follows that $a, b, c>0$, which is a contradiction to (23) since $L \kappa_{L}>0$. Hence we have

$$
\begin{equation*}
L \kappa_{L}<\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1} \tag{24}
\end{equation*}
$$

By (21) and (24), we have

$$
g_{L}\left(\kappa_{L}\right)=L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}+2 \pi<2 \pi
$$

Since $L \kappa_{L}>0$, we have

$$
-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}<L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}<0
$$

by (24). So by Lemma 6 ,

$$
\begin{aligned}
0 & \geq \lim _{L \rightarrow 0+}\left\{L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right\} \geq-\lim _{L \rightarrow 0+} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1} \\
& =-\lim _{\kappa_{L} \rightarrow \infty} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}=0
\end{aligned}
$$

and hence we have

$$
\lim _{L \rightarrow 0+}\left\{L \kappa_{L}-\arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right\}=0
$$

Thus by (21) again, we have

$$
\lim _{L \rightarrow 0+} g_{L}\left(\kappa_{L}\right)=\lim _{L \rightarrow 0+}\left\{L \kappa_{L}-\lim _{L \rightarrow 0+} \arctan \frac{4 \kappa_{L}\left(\kappa_{L}^{2}-1\right)}{\kappa_{L}^{4}-6 \kappa_{L}^{2}+1}\right\}+2 \pi=2 \pi
$$

which completes the proof.
Lemma 7 indicates that it is enough to consider the case when $g_{L}(\kappa)<2 \pi$ to prove (3). We will do the change of the variables from κ to t via $t=g_{L}(\kappa)$ for $\kappa \geq 0$, or equivalently, $\kappa=g_{L}^{-1}(t)$ for $t \geq 0$.

Lemma 8. Suppose $0<t<2 \pi$. Then $\lim _{L \rightarrow 0+} g_{L}^{-1}(t)=\hat{g}^{-1}(-t)$, and $g_{L}^{-1}(t)<\hat{g}^{-1}(-t)$ for every $L>0$.
Proof. From the definition (7) of g_{L}, we have

$$
\begin{equation*}
L \cdot g_{L}^{-1}(t)-\hat{g}\left(g_{L}^{-1}(t)\right)=t \tag{25}
\end{equation*}
$$

Differentiating with respect to L, we have

$$
1 \cdot g_{L}^{-1}(t)+L \cdot \frac{\partial}{\partial L} g_{L}^{-1}(t)-\hat{g}^{\prime}\left(g_{L}^{-1}(t)\right) \cdot \frac{\partial}{\partial L} g_{L}^{-1}(t)=0
$$

and hence by (7) and (10),

$$
\frac{\partial}{\partial L} g_{L}^{-1}(t)=-\frac{g_{L}^{-1}(t)}{L-\hat{g}^{\prime}\left(g_{L}^{-1}(t)\right)}=-\frac{\kappa}{L-\hat{g}^{\prime}(\kappa)}=-\frac{\kappa}{g_{L}^{\prime}(\kappa)}<0
$$

where we put $\kappa=g_{L}^{-1}(t)$. This shows that $g_{L}^{-1}(t)$ is strictly decreasing with respect to L for any fixed t, and consequently, $g_{L}^{-1}(t)$ is strictly increasing as $L \searrow 0$.

Suppose $0<t<2 \pi$. If $\lim _{L \rightarrow 0+} g_{L}^{-1}(t)=\infty$, then by (8) and (25), we have

$$
\begin{aligned}
2 \pi>t & =\lim _{L \rightarrow 0+}\left\{L \cdot g_{L}^{-1}(t)\right\}-\lim _{L \rightarrow 0+}\left\{\hat{g}\left(g_{L}^{-1}(t)\right)\right\} \\
& =\lim _{L \rightarrow 0+}\left\{L \cdot g_{L}^{-1}(t)\right\}-\lim _{\kappa \rightarrow \infty}\{\hat{g}(\kappa)\} \\
& =\lim _{L \rightarrow 0+}\left\{L \cdot g_{L}^{-1}(t)\right\}-(-2 \pi) \geq 2 \pi
\end{aligned}
$$

which is a contradiction. So $\lim _{L \rightarrow 0+} g_{L}^{-1}(t)<\infty$. Note from (25) again that

$$
t=\lim _{L \rightarrow 0+} L \cdot \lim _{L \rightarrow 0+} g_{L}^{-1}(t)-\lim _{L \rightarrow 0+}\left\{\hat{g}\left(g_{L}^{-1}(t)\right)\right\}=0-\hat{g}\left(\lim _{L \rightarrow 0+} g_{L}^{-1}(t)\right)
$$

from which it follows that $\lim _{L \rightarrow 0+} g_{L}^{-1}(t)=\hat{g}^{-1}(-t)$. Since $g_{L}^{-1}(t)$ is strictly decreasing with respect to L, we have $g_{L}^{-1}(t)<\hat{g}^{-1}(-t)$ for every $L>0$.

We remark that, in fact, $\lim _{L \rightarrow 0+} g_{L}^{-1}(t)=\infty$ for every $t \geq 2 \pi$, whose proof we omit. For $t \geq 0$, define

$$
\tilde{\psi}_{L}(t)=\psi_{L}\left(g_{L}^{-1}(t)\right), \quad \tilde{q}_{L}(t)=q\left(g_{L}^{-1}(t)\right)
$$

The functions $\tilde{\psi}_{L}$ and \tilde{q}_{L} can be considered as "mollified" versions of ψ_{L} and q as $L \searrow 0$. From the definitions of ψ_{L} and $\tilde{\psi}_{L}$, we have

$$
\begin{equation*}
\tilde{\psi}_{L}(t)=e^{L \cdot g_{L}^{-1}(t)} f(\cos t)>f(\cos t) \quad \text { for } t>0 \tag{26}
\end{equation*}
$$

Note that $\hat{g}^{-1}(-3 \pi / 2)=1+\sqrt{2}$ by (8), and $g_{L}^{-1}(3 \pi / 2)$ is strictly increasing to $\hat{g}^{-1}(-3 \pi / 2)=1+\sqrt{2}$ as L goes down to 0 by Lemma 8 . It follows that, for every sufficiently small $L>0$, we have $g_{L}^{-1}(t)>1$ for $3 \pi / 2<t<2 \pi$. Since q is strictly increasing on $(1, \infty)$ by Lemma 1 , we have

$$
\begin{array}{ll}
\tilde{q}_{L}(t)=q\left(g_{L}^{-1}(t)\right)<q\left(\hat{g}^{-1}(-t)\right) & \text { for } 3 \pi / 2<t<2 \pi \tag{27}\\
& \text { for every sufficiently small } L>0
\end{array}
$$

by Lemma 8 .
Lemma 9. For every sufficiently small $L>0, \tilde{\psi}_{L}(t)>\tilde{q}_{L}(t)$ for $3 \pi / 2<t<$ 2π.

Proof. By (26) and (27), it is enough to show that $f(\cos t)>q\left(\hat{g}^{-1}(-t)\right)$ for $3 \pi / 2<t<2 \pi$. Suppose $3 \pi / 2<t<2 \pi$. Note that $\kappa:=\hat{g}^{-1}(-t)>1+\sqrt{2}$ by (8). So by (8) again, we have

$$
-t=\hat{g}(\kappa)=-2 \pi+\arctan \frac{4 \kappa\left(\kappa^{2}-1\right)}{\kappa^{4}-6 \kappa^{2}+1}
$$

and hence

$$
\begin{equation*}
\frac{4 \kappa\left(\kappa^{2}-1\right)}{\kappa^{4}-6 \kappa^{2}+1}=\tan (2 \pi-t)=-\tan t \tag{28}
\end{equation*}
$$

Note that, for each $t \in(3 \pi / 2,2 \pi)$, we have $-\tan t>0$, and κ is the unique positive solution of (28) such that $\kappa>1+\sqrt{2}$. Transform (28) to

$$
-\tan t \cdot\left(\kappa^{4}-6 \kappa^{2}+1\right)=4 \kappa\left(\kappa^{2}-1\right),
$$

and then to

$$
4\left(\kappa-\frac{1}{\kappa}\right)=-\tan t \cdot\left(\kappa^{2}-6+\frac{1}{\kappa^{2}}\right)=-\tan t \cdot\left\{\left(\kappa-\frac{1}{\kappa}\right)^{2}-4\right\}
$$

Putting

$$
\begin{equation*}
x=\kappa-\frac{1}{\kappa} \tag{29}
\end{equation*}
$$

we have $4 x=-\tan t \cdot\left(x^{2}-4\right)$, and hence $\tan t \cdot x^{2}+4 x-4 \tan t=0$, which gives

$$
x=\frac{-2 \pm \sqrt{4+4 \tan ^{2} t}}{\tan t}=\frac{-2 \cos t \pm 2}{\sin t} .
$$

Note that $\sin t<0$ for $3 \pi / 2<t<2 \pi$. Since $\kappa>1$, we have $x>0$ by (29), and hence

$$
\begin{equation*}
x=\frac{-2 \cos t-2}{\sin t}=\frac{-2(1+\cos t)}{\sin t} \tag{30}
\end{equation*}
$$

Substituting (30) into (29) again, we have

$$
\begin{equation*}
\sin t \cdot \kappa^{2}+2(1+\cos t) \kappa-\sin t=0 \tag{31}
\end{equation*}
$$

Solving (31) for κ, we have

$$
\kappa=\frac{-(1+\cos t) \pm \sqrt{(1+\cos t)^{2}+\sin ^{2} t}}{\sin t}=\frac{-(1+\cos t) \pm \sqrt{2} \sqrt{1+\cos t}}{\sin t}
$$

Since $\kappa>0$ and $\sin t<0$, we finally have

$$
\hat{g}^{-1}(-t)=\kappa=\frac{-(1+\cos t)-\sqrt{2} \sqrt{1+\cos t}}{\sin t}=\frac{\sqrt{1+\cos t}+\sqrt{2}}{\sqrt{1-\cos t}}
$$

and thus by (4),

$$
\begin{aligned}
& q\left(\hat{g}^{-1}(-t)\right) \\
= & \left\{\frac{\frac{\sqrt{1+\cos t}+\sqrt{2}}{\sqrt{1-\cos t}}-1}{\frac{\sqrt{1+\cos t}+\sqrt{2}}{\sqrt{1-\cos t}}+1}\right\}^{2}=\left\{\frac{\sqrt{1+\cos t}+\sqrt{2}-\sqrt{1-\cos t}}{\sqrt{1+\cos t}+\sqrt{2}+\sqrt{1-\cos t}}\right\}^{2} \\
= & \left\{\frac{\sqrt{1+\cos t}+\sqrt{2}-\sqrt{1-\cos t}}{\sqrt{1+\cos t}+\sqrt{2}+\sqrt{1-\cos t}} \cdot \frac{\sqrt{1+\cos t}+\sqrt{2}-\sqrt{1-\cos t}}{\sqrt{1+\cos t}+\sqrt{2}-\sqrt{1-\cos t}}\right\}^{2} \\
= & \frac{1}{\{(1+\cos t)+2 \sqrt{2} \sqrt{1+\cos t}+2-(1-\cos t)\}^{2}} \\
& \cdot\{(1+\cos t)+(1-\cos t)+2+2 \sqrt{2} \sqrt{1+\cos t}
\end{aligned}
$$

$$
\begin{aligned}
& -2 \sqrt{2} \sqrt{1-\cos t}-2 \sqrt{1-\cos t} \sqrt{1+\cos t}\}^{2} \\
= & \left\{\frac{2 \sqrt{2}(\sqrt{1+\cos t}+\sqrt{2})-2 \sqrt{1-\cos t}(\sqrt{1+\cos t}+\sqrt{2})}{2 \sqrt{1+\cos t}(\sqrt{1+\cos t}+\sqrt{2})}\right\}^{2} \\
= & \left\{\frac{\sqrt{2}-\sqrt{1-\cos t}}{\sqrt{1+\cos t}}\right\}^{2}=\frac{3-\cos t-2 \sqrt{2} \sqrt{1-\cos t}}{1+\cos t} .
\end{aligned}
$$

By (6), it remains to show that

$$
2-\cos t-\sqrt{(2-\cos t)^{2}-1}>\frac{3-\cos t-2 \sqrt{2} \sqrt{1-\cos t}}{1+\cos t}
$$

for $3 \pi / 2<t<2 \pi$, which is done by the following series of equivalent transformations:

$$
\begin{gathered}
-\cos ^{2} t+\cos t+2-(1+\cos t) \sqrt{(2-\cos t)^{2}-1}>3-\cos t-2 \sqrt{2} \sqrt{1-\cos t} \\
(1-\cos t)^{2}+(1+\cos t) \sqrt{(1-\cos t)(3-\cos t)}<2 \sqrt{2} \sqrt{1-\cos t} \\
\sqrt{1-\cos t^{3}}+(1+\cos t) \sqrt{3-\cos t}<2 \sqrt{2} \\
(1-\cos t)^{3}<8+(1+\cos t)^{2}(3-\cos t)-4 \sqrt{2}(1+\cos t) \sqrt{3-\cos t} \\
2 \cos ^{2} t-8 \cos t-10<-4 \sqrt{2}(1+\cos t) \sqrt{3-\cos t} \\
(1+\cos t)(5-\cos t)>2 \sqrt{2}(1+\cos t) \sqrt{3-\cos t} \\
\cos ^{2} t-10 \cos t+25>8(3-\cos t) \\
\cos ^{2} t-2 \cos t+1>0
\end{gathered}
$$

where we used (17) for the second inequality.
We now have all the ingredients needed to prove (3), which implies Theorem 1 .

Proof of Theorem 1. By Proposition 2, it is sufficient to show (3). Suppose (3) is false, so that the equation $\psi_{L_{0}}(\kappa) \leq q(\kappa)$ has a positive solution for some $L_{0}>0$. Then by Lemma 4 , there exists κ_{L} satisfying $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ and $\psi_{L}{ }^{\prime}\left(\kappa_{L}\right)=q^{\prime}\left(\kappa_{L}\right)$ for $0<L<L_{0}$. Let $t_{N}:=g_{L}\left(\kappa_{L}\right)$ for $0<L<L_{0}$. By Lemma 7 , we have $3 \pi / 2<t_{L}<2 \pi$ for every sufficiently small $L>0$. So by Lemma 9, we have $\tilde{\psi}_{L}\left(t_{L}\right)>\tilde{q}_{L}\left(t_{L}\right)$, and hence

$$
\psi_{L}\left(\kappa_{L}\right)=\psi_{L}\left(g_{L}^{-1}\left(t_{L}\right)\right)=\tilde{\psi}_{L}\left(t_{L}\right)>\tilde{q}_{L}\left(t_{L}\right)=q\left(g_{L}^{-1}\left(t_{L}\right)\right)=q\left(\kappa_{L}\right)
$$

for every sufficiently small $L>0$. This is a contradiction to the result that $\psi_{L}\left(\kappa_{L}\right) \leq q\left(\kappa_{L}\right)$ for $0<L<L_{0}$. Thus we conclude that (3) is true.

References

[1] E. Alves, E. A. de Toledo, L. A. P. Gomes, and M. B. de Souza Cortes, A note on iterative solutions for a nonlinear fourth order ode, Bol. Soc. Parana. Mat. (3) 27 (2009), no. 1, 15-20.
[2] F. W. Beaufait and P. W. Hoadley, Analysis of elastic beams on nonlinear foundations, Comput. Struct. 12 (1980), 669-676.
[3] S. W. Choi, Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation I: positiveness and contractiveness, J. Appl. Math. Inform. 30 (2012), no. 1-2, 27-47.
[4] , Spectral analysis of the integral operator arising from the beam deflection problem on elastic foundation II: eigenvalues, Bound. Value Probl. 2015 (2015), no. 6, 27pp.
[5] S. W. Choi and T. S. Jang, Existence and uniqueness of nonlinear deflections of an infinite beam resting on a non-uniform nonlinear elastic foundation, Bound. Value Probl. 2012 (2012), no. 5, 24 pp.
[6] M. Galewski, On the nonlinear elastic simply supported beam equation, An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 19 (2011), no. 1, 109-119.
[7] M. D. Greenberg, Foundations of Applied Mathematics, Prentice-Hall Inc., 1978.
[8] M. R. Grossinho and A. I. Santos, Solvability of an elastic beam equation in presence of a sign-type Nagumo control, Nonlinear Stud. 18 (2011), no. 2, 279-291.
[9] M. Hetenyi, Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, Mich., 1946.
[10] Y. H. Kuo and S. Y. Lee, Deflection of non-uniform beams resting on a nonlinear elastic foundation, Comput. Struct. 51 (1994), 513-519.
[11] C. Miranda and K. Nair, Finite beams on elastic foundation, ASCE. I. Struct. Div. 92 (1966), 131-142.
[12] S. P. Timoshenko, Statistical and dynamical stress in rails, Proceedings of the International Congress on Applied Mechanics (Zurich), 407-418, 1926.
[13] 1955.
[14] B. Y. Ting, Finite beams on elastic foundation with restraints, ASCE. J. Struct. Div. 108 (1982), 611-621.

Department of Mathematics
Duksung Women's University
Seoul 132-714, Korea
E-mail address: swchoi@duksung.ac.kr

