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ON POSITIVENESS AND CONTRACTIVENESS OF THE

INTEGRAL OPERATOR ARISING FROM THE BEAM

DEFLECTION PROBLEM ON ELASTIC FOUNDATION

Sung Woo Choi

Abstract. We provide a complete proof that there are no eigenvalues of
the integral operator Kl outside the interval (0, 1/k). Kl arises naturally
from the deflection problem of a beam with length 2l resting horizontally
on an elastic foundation with spring constant k, while some vertical load
is applied to the beam.

1. Introduction

We consider the vertical deflection u(x) of a linear-shaped beam with length
2l > 0 resting horizontally on an elastic foundation. The beam is subject
to the downward load distribution w(x) applied vertically on the beam. The
given elastic foundation follows Hooke’s law with spring constant k > 0, so
that k · u(x) is the spring force distribution by the elastic foundation. Let the
constants E and I be Young’s modulus and the mass moment of inertia of the
beam respectively, so that EI is the flexural rigidity of the beam. According
to the classical Euler beam theory, the resulting deflection u(x) is a solution of
the following fourth-order linear ODE:

(1) EI
d4u(x)

dx4
+ k · u(x) = w(x).

The beam deflection problem described above has been one of the corner-
stones of mechanical engineering [1, 2, 6, 8, 9, 10, 11, 12, 13, 14]. In fact,
when the length of the beam is infinite, (1) with the boundary condition
limx→±∞ u(x) = limx→±∞ u′(x) = 0 has the following closed form solution [7]:

u(x) =

∫ ∞

−∞
K (|x− ξ|)w(ξ) dξ.
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Here, the kernel function K(·) is

K(y) :=
α

2k
exp

(

− α√
2
y

)

sin

(

α√
2
y +

π

4

)

,

where α := 4

√

k/(EI). By analyzing the integral operator K defined by

K[u](x) :=

∫ ∞

−∞
K (|x− ξ|)u(ξ) dξ,

Choi et al. [5] obtained an existence and uniqueness result for the solution of
the following nonlinear and nonuniform generalization of (1) for infinitely long
beam:

(2) EI
d4u(x)

dx4
+ φ (u(x), x) = w(x).

To deal with the more practical problem of the nonlinear and nonuniform
beam deflection with a finite length 2l > 0, it is important to analyze the
integral operator Kl defined by

Kl[u](x) :=

∫ l

−l

K (|x− ξ|) u(ξ) dξ.

Recently, Choi [3, 4] performed analysis on the eigenstructure of Kl as a lin-
ear operator on the Hilbert space L2[−l, l] of the square-integrable complex
functions on [−l, l].
Proposition 1 ([4]). The eigenvalues of Kl inside the real interval (0, 1/k) are
µ1/k > ν1/k > µ2/k > ν2/k > · · · ց 0, and µn ∼ νn ∼ n−4 as n→ ∞.

Since the operator Kl is self-adjoint, all of its eigenvalues are real. In fact, it
is shown in [3] that 0 and 1/k are not eigenvalues of Kl. About the eigenvalues
of Kl in (−∞, 0) ∪ (1/k,∞), they obtained a characteristic equation in terms
of specific functions ψL(κ) and q(κ) defined in Section 2.

Proposition 2 ([3]). λ ∈ (−∞, 0) ∪ (1/k,∞) is an eigenvalue of Kl if and

only if ψL(κ) = q(κ), where κ = 4

√

1− 1/(λk) > 0 and L = 2
√
2lα.

In this paper, we provide a complete proof of the fact

(3) ψL(κ) > q(κ) for every κ > 0 and for every L > 0,

from which the following result follows immediately by Proposition 2.

Theorem 1. There are no eigenvalues of the operator Kl outside the interval

(0, 1/k).

Theorem 1 implies that the operator Kl is positive and contractive in dimen-
sion-free sense, which is relevant to the existence and the uniqueness of the
solution to the nonlinear and nonuniform problem (2). We remark that the
proof of Lemma 3.2 in [3], which also asserts (3), was incomplete in that it
only amounts to showing that ψL(κ) > q(κ) for every sufficiently small κ > 0
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for every L > 0, which is indeed far from complete. However, our proof of (3)
indicates that the conclusions of [3], including Lemma 3.2, Theorems 4.1 and
4.2 therein, remain unchanged.

2. Preliminaries

For κ ≥ 0, define

q(κ) =
(κ− 1)2

(κ+ 1)2
,(4)

ψL(κ) = eLκ · f (cos gL(κ)) ,(5)

where

(6) f(t) = (2− t)−
√

(2 − t)2 − 1.

Here, L := 2
√
2lα, l, α are positive constants, and the function gL, parametrized

by L > 0, is one-to-one and onto from [0,∞) to [0,∞) with gL(0) = 0. Specif-
ically, gL, which was denoted by g in [3], is defined as follows:

(7) gL(κ) = Lκ− ĝ(κ),

where

(8) ĝ(κ) =















































arctan

{

4κ(κ2−1)
κ4−6κ2+1

}

if 0 ≤ κ <
√
2− 1,

−π
2 if κ =

√
2− 1,

−π + arctan

{

4κ(κ2−1)
κ4−6κ2+1

}

if
√
2− 1 < κ <

√
2 + 1,

− 3π
2 if κ =

√
2 + 1,

−2π + arctan

{

4κ(κ2−1)
κ4−6κ2+1

}

if κ >
√
2 + 1.

Here, the branch of arctan is taken such that arctan(0) = 0. As is shown in
[3], ĝ is continuous and differentiable on [0,∞), and is strictly decreasing from
ĝ(0) = 0 to limκ→∞ ĝ(κ) = −2π. In fact, we have [3, pp. 43–44]

ĝ′(κ) = − 4

κ2 + 1
,(9)

gL
′(κ) = L+

4

κ2 + 1
.(10)

The inverse g−1
L of gL is differentiable, and is one-to-one and onto from [0,∞)

to [0,∞) with g−1
L (0) = 0.

Note that the function q is differentiable. The function ψL is continuous,
but is only piecewise differentiable. (See Lemma 2(a) and its proof below.) The
following observation, which is immediate from the intermediate value theorem
and the mean value theorem, plays a key role in our proof of (3), and hence
Theorem 1.
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Proposition 3. Suppose ξ and η are continuous and piecewise differentiable

functions on [a, b] satisfying ξ(a) ≥ η(a) and ξ(b) ≥ η(b), and possible dis-

continuities of ξ′ and η′ are discrete. Suppose the equation ξ(κ) ≤ η(κ) has a

solution in (a, b), and ξ and η are differentiable at every such solution. Then

there exists κ0 in (a, b) such that ξ (κ0) ≤ η (κ0) and ξ
′ (κ0) = η′ (κ0).

3. The functions ψL and q

We first examine properties of the functions ψL and q. From (4), we have

q′(κ) =

{

(κ− 1)
2

(κ+ 1)2

}′

=
2 (κ− 1) · (κ+ 1)

2 − (κ− 1)
2 · 2 (κ+ 1)

(κ+ 1)4

=
2 (κ− 1) {(κ+ 1)− (κ− 1)}

(κ+ 1)
3 =

4 (κ− 1)

(κ+ 1)
3 .(11)

The properties of the function q(κ) that we need, are summarized in Lemma 1,
whose proof is immediate from (4) and (11).

Lemma 1. q is strictly decreasing on [0, 1] from q(0) = 1 to q(1) = 0, and

strictly increasing on [1,∞) approaching 1. In particular, 0 ≤ q(κ) < 1 for

κ > 0.

Note that the function f in (6) is continuous and positive. It is differentiable
except at t = 1. In fact, we have

f ′(t) = −1− 2(2− t) · (−1)

2
√

(2− t)2 − 1
= −1 +

2− t
√

(2− t)2 − 1
=

f(t)
√

(2 − t)2 − 1
(12)

≥ 0,

and hence f is increasing. It follows that

(13) 0 < 3− 2
√
2 ≤ f(cos gL(κ)) ≤ 1 for κ > 0,

since −1 ≤ cos gL(κ) ≤ 1 and f(−1) = 3 − 2
√
2, f(1) = 1. So ψL(κ) =

eLκf (cosκ) ≥
(

3− 2
√
2
)

eLκ, and hence we have

(14) ψL(κ) > 0 for κ > 0, L > 0,

(15) lim
κ→∞

ψL(κ) = ∞ for L > 0.

By (12), we have

ψL
′(κ) = eLκ {L · f (cos gL(κ)) + f ′ (cos gL(κ)) · (− sin gL(κ)) · gL′(κ)}

= eLκ



L · f (cos gL(κ)) +
f (cos gL(κ)) · (− sin gL(κ)) · gL′(κ)

√

(2− cos gL(κ))
2 − 1





= ψL(κ)







L− sin gL(κ)
√

(2− cos gL(κ))
2 − 1

· gL′(κ)







.(16)
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Using the identity

(17) (2− cos t)
2 − 1 = cos2 t− 4 cos t+ 3 = (1− cos t) (3− cos t) ,

we have

lim
t→0±

sin t
√

(2− cos t)
2 − 1

= lim
t→0±

±
√

(1− cos t) (1 + cos t)
√

(1− cos t) (3− cos t)

= ± lim
t→0±

√

(1 + cos t)
√

(3− cos t)
= ±1.(18)

Since

(

sin t
√

(2− cos t)2 − 1

)′

=
cos t ·

√

(2− cos t)2 − 1− sin t · 2(2−cos t)·sin t

2
√

(2−cos t)2−1

(2− cos t)2 − 1

=
cos t ·

{

(2− cos t)2 − 1
}

−
(

1− cos2 t
)

(2− cos t)
√

(2− cos t)2 − 1
3

=
−2 cos2 t+ 4 cos t− 2
√

(2− cos t)
2 − 1

3 = − 2 (1− cos t)
2

√

(2− cos t)
2 − 1

3 ≤ 0,

the periodic function sin t

/

√

(2− cos t)
2 − 1 is strictly decreasing on (0, 2π),

and hence, together with (18), we have

(19) −1 ≤ sin t
√

(2− cos t)2 − 1
≤ 1.

Lemma 2. (a) ψL is differentiable at every κ > 0 such that ψL(κ) ≤ q(κ).
(b) ψL

′(κ) ≥ −ψL(κ)·4/
(

κ2 + 1
)

for every κ > 0 where ψL is differentiable.

Proof. Let κ > 0. By (16), ψL is differentiable except at g−1
L (2πn) for n =

1, 2, 3, . . .. For n=1, 2, 3, . . ., ψL

(

g−1
L (2πn)

)

= eL·g−1

L
(2πn)·f(2πn) = eL·g−1

L
(2πn)

> 1 by (5) and (6), and q
(

g−1
L (2πn)

)

< 1 by Lemma 1. So ψL

(

g−1
L (2πn)

)

>

q
(

g−1
L (2πn)

)

for n = 1, 2, 3, . . ., which shows (a).

By (16), (19), we have ψL
′(κ) ≥ ψL(κ) · {L− gL

′(κ)}, since ψL(κ) > 0 by
(14) and gL

′(κ) > 0 by (10). Hence (b) follows from (10). �

4. Proof of the main result

In proving (3), we will divide the cases into the following: (i) When 0 < κ ≤
1, and (ii) when κ > 1. The former case is settled with Lemma 3 below.

Lemma 3. If 0 < κ ≤ 1, then ψL(κ) > q(κ) for every L > 0.
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Proof. Note first that ψL(1) > 0 = q(1) by (4) and (14). So (3) holds when
κ = 1. Note also that ψL(0) = 1 = q(0) by (4) and (5). Suppose (3) is not true
for 0 < κ < 1, so that there exists a solution of the equation ψL(κ) ≤ q(κ) in
(0, 1) for some L > 0. By Lemma 2(a), ψL and q are differentiable at every
such solution. Thus we can apply Proposition 3 to ψL and q on [0, 1], so that
there exists κ0 in (0, 1) satisfying ψL (κ0) ≤ q (κ0), ψL

′(κ0) = q′ (κ0). So by
(14) and Lemma 2(b), we have

q′ (κ0) = ψL
′(κ0) ≥ −ψL (κ0) ·

4

κ20 + 1
≥ −q (κ0) ·

4

κ20 + 1
,

and hence by (4) and (11),

4 (κ0 − 1)

(κ0 + 1)
3 ≥ − (κ0 − 1)

2

(κ0 + 1)
2 · 4

κ20 + 1
.

Since 0 < κ0 < 1, this is equivalent to κ20 + 1 ≤ −
(

κ20 − 1
)

, or κ20 ≤ 0, which
implies κ0 = 0. This is a contradiction, and so we conclude ψL(κ) > q(κ) for
every 0 < κ ≤ 1. �

For the rest of the paper, we will deal with the case κ > 1. The next result
shows the nature of the equation ψL(κ) ≤ q(κ) with respect to L.

Lemma 4. Suppose the equation ψL0
(κ) ≤ q(κ) has a positive solution for

some L0 > 0. Then, for each L with 0 < L ≤ L0, there exists κL > 1 such that

ψL (κL) ≤ q (κL) and ψL
′(κL) = q′ (κL).

Proof. Suppose the equation ψL0
(κ) ≤ q(κ) has a solution κ0 > 0 for some

L0 > 0. Note that κ0 > 1 by Lemma 3. From (7), we have ∂gL(κ)/∂L = κ. So
from (5) and (12), we have

∂ψL(κ)

∂L
=

∂

∂L

{

eLκ · f (cos gL(κ))
}

= κeLκ · f (cos gL(κ)) + eLκ · f ′ (cos gL(κ)) · (− sin gL(κ)) ·
∂gL(κ)

∂L

= κ · eLκf (cos gL(κ))− eLκ · f (cos gL(κ)) sin gL(κ)√

(2− cos gL(κ))
2 − 1

· κ

= κ · ψL(κ)







1− sin gL(κ)
√

(2− cos gL(κ))
2 − 1







≥ 0,

where we used (14) and (19) for the last inequality. Thus ψL (κ0) is increasing
with respect to L, and hence ψL (κ0) ≤ ψL0

(κ0) ≤ q (κ0) for every L such that
0 < L < L0.

Note that ψL(1) > 0 = q(1) for every L > 0. Since limκ→∞ q(κ) = 1
by Lemma 1 and limκ→∞ ψL(κ) = ∞ by (15), there exists bL > x0 > 1
such that ψL (bL) > q (bL) for each L > 0. By Lemma 2(a), ψL and q are
differentiable at every κ ∈ (1, bL) such that ψL(κ) ≤ q(κ). Thus, for each L
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such that 0 < L < L0, we can apply Proposition 3 to ψL and q on [1, bL],
so that there exists κL ∈ (1, bL) ⊂ (1,∞) satisfying ψL (κL) ≤ q (κL) and
ψL

′(κL) = q′ (κL). �

Lemma 5. Suppose ψL (κ) ≤ q (κ) for some κ > 0 and L > 0. Then κ >

1 +
√
2.

Proof. For L > 0, the condition ψL(κ) ≤ q(κ) implies

(κ− 1)
2

(κ+ 1)
2 ≥ eLκf (cos gL(κ)) ≥ eLκ

(

3− 2
√
2
)

> 3− 2
√
2

by (4), (5), (13), and hence

0 < (κ− 1)
2 −

(

3− 2
√
2
)

(κ+ 1)
2

=
(

2
√
2− 2

)

κ2 − 2
(

4− 2
√
2
)

κ+
(

2
√
2− 2

)

=
(

2
√
2− 2

){

κ2 − 2
√
2κ+ 1

}

=
(

2
√
2− 2

){

κ−
(√

2− 1
)}{

κ−
(√

2 + 1
)}

.

So we have κ <
√
2− 1 or κ >

√
2 + 1. It follows that κ >

√
2 + 1, since κ > 1

by Lemma 3. �

In view of Lemma 4, it is legitimate to consider the behavior of (hypothetical)
κL, as Lց 0.

Lemma 6. Suppose ψL (κL) ≤ q (κL) and ψL
′(κL) = q′ (κL) with κL > 0.

Then limL→0+ κL = ∞.

Proof. Note first that κL > 1 by Lemma 3. From the assumption ψL
′(κL) =

q′ (κL) and (16), we have

q′ (κL) = ψL
′(κL) = ψL (κL)







L− sin gL (κL)
√

(2− cos gL (κL))
2 − 1

· gL′(κL)







.

Since q′ (κL) > 0 by (11) and ψL (κL) > 0 by (14), we have

L− sin gL (κL)
√

(2− cos gL (κL))
2 − 1

· gL′(κL) > 0,

and hence

q′ (κL) ≤ q (κL)







L− sin gL (κL)
√

(2− cos gL (κL))
2 − 1

· gL′(κL)






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by the assumption ψL (κL) ≤ q (κL). So by (4), (11), we have

4

κ2L − 1
=
q′ (κL)

q (κL)
≤ L− sin gL (κL)

√

(2− cos gL (κL))
2 − 1

· gL′(κL) ,

and hence

(20) gL
′(κL) sin gL (κL) ≤

(

L− 4

κ2L − 1

)

√

(2− cos gL (κL))
2 − 1.

If L − 4
κ2

L
−1

≥ 0, which is equivalent to κL ≥
√

1 + 4
L
, then limL→0+ κL ≥

limL→0+

√

1 + 4
L

= ∞, and hence we have limL→0+ κL = ∞. So we assume

L− 4
κ2−1 < 0 for the rest of the proof. Then the right side, and hence the left

side as well, of (20) becomes negative. By squaring the both nonnegative sides
of

− gL
′(κL) sin gL (κL) ≥ −

(

L− 4

κ2L − 1

)

√

(2− cos gL (κL))
2 − 1,

we have

{gL′(κL)}2
(

1− cos2 gL (κL)
)

≥
(

L− 4

κ2L − 1

)2
{

(2− cos gL (κL))
2 − 1

}

=

(

L− 4

κ2L − 1

)2
{

cos2 gL (κL)− 4 cos gL (κL) + 3
}

,

and hence

0 ≥
{

{gL′(κL)}2 +
(

L− 4

κ2L − 1

)2
}

cos2 gL (κL)

− 4

(

L− 4

κ2L − 1

)2

cos gL (κL) +

{

3

(

L− 4

κ2L − 1

)2

− {gL′(κL)}2
}

.

So we have α ≤ cos gL (κL) ≤ β, where α, β are (interchangeably)

1

{gL′(κL)}2 +
(

L− 4
κ2

L
−1

)2

[

2

(

L− 4

κ2L − 1

)2

±
{

4

(

L− 4

κ2L − 1

)4

−
{

{gL′(κL)}2 +
(

L− 4

κ2L − 1

)2
}{

3

(

L− 4

κ2L − 1

)2

− {gL′(κL)}2
}}

1

2





=

2
(

L− 4
κ2

L
−1

)2

±
∣

∣

∣

∣

{gL′(κL)}2 −
(

L− 4
κ2

L
−1

)2
∣

∣

∣

∣

{gL′(κL)}2 +
(

L− 4
κ2

L
−1

)2
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= 1,
−{gL′(κL)}2 + 3

(

L− 4
κ2

L
−1

)2

{gL′(κL)}2 +
(

L− 4
κ2

L
−1

)2 .

Note that cos gL (κL) < 1 by Lemma 2(a) and its proof. Thus we must have

−{gL′(κL)}2 + 3
(

L− 4
κ2

L
−1

)2

{gL′(κL)}2 +
(

L− 4
κ2

L
−1

)2 < 1,

which is equivalent to
(

L− 4

κ2L − 1

)2

< {gL′(κL)}2 =

(

L+
4

κ2L + 1

)2

by (10). Since we assumed that L− 4/
(

κ2L − 1
)

< 0, we have

−
(

L− 4

κ2L − 1

)

< L+
4

κ2L + 1
,

and hence

L >
1

2

(

4

κ2L − 1
− 4

κ2L + 1

)

=
4

κ4L − 1
,

which is equivalent to κL >
4

√

1 + 4
L
. So limL→0+ κL ≥ limL→0+

4

√

1 + 4
L
= ∞.

Thus we have limL→0+ κL = ∞, and the proof is complete. �

Lemma 7. Suppose ψL (κL) ≤ q (κL) and ψL
′(κL) = q′ (κL) with κL > 0.

Then gL (κL) < 2π and limL→0+ gL (κL) = 2π.

Proof. From the assumption ψL (κL) = eLκL ·f (cos gL (κL)) ≤ q (κL), we have

eLκL

q (κL)
≤ 1

f (cos gL (κL))
=

1

2− cos gL (κL)−
√

(2− cos gL (κL))
2 − 1

= 2− cos gL (κL) +

√

(2− cos gL (κL))
2 − 1.

Since cos t=cos(t−2π) ≥ 1−(t−2π)2/2, we have 2−cos t ≤ 2−
{

1− (t− 2π)2/2
}

= 1 + (t− 2π)2/2, and hence

2− cos t+

√

(2− cos t)
2 − 1 ≤ 1 +

(t− 2π)2

2
+

√

{

1 +
(t− 2π)2

2

}2

− 1

= 1 +
(t− 2π)2

2
+

√

(t− 2π)2 +
(t− 2π)4

4

= 1 +
(t− 2π)2

2
+ |t− 2π|

√

1 +
(t− 2π)2

4

≤ 1 +
(t− 2π)2

2
+ |t− 2π|

{

1 +
(t− 2π)2

8

}
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= 1 + |t− 2π|+ |t− 2π|2
2

+
|t− 2π|3

8

for every t ∈ R, where we used the inequality
√

1 + x2/4 ≤ 1 + x2/8 for the
second inequality. So we have

eLκL

q (κL)
≤ 1 + |gL (κL)− 2π|+ 1

2
|gL (κL)− 2π|2 + 1

8
|gL (κL)− 2π|3 .

Note that, since κL > 1 +
√
2 by Lemma 5,

(21) gL (κL)− 2π = LκL − ĝ (κL)− 2π = LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

by (7) and (8). So from the inequality ex > 1+ x+ x2

2 + x3

6 for x > 0, we have

1

q (κL)

{

1 + LκL +
1

2
(LκL)

2
+

1

6
(LκL)

3

}

< 1 +

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

2

+
1

8

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

3

,

or equivalently,

24 + 24LκL + 12 (LκL)
2
+ 4 (LκL)

3

< 24q (κL) + 24q (κL)

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

+ 12q (κL)

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

2

+ 3q (κL)

∣

∣

∣

∣

∣

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

∣

∣

∣

∣

∣

3

.(22)

Suppose

LκL ≥ arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
.

Then (22) becomes

0 > {4− 3q (κL)} (LκL)3

+

{

12 + 9q (κL) arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 12q (κL)

}

(LκL)
2

+

{

24− 9q (κL) arctan
2 4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
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+24q (κL) arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 24q (κL)

}

LκL

+

{

24 + 3q (κL) arctan
3 4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 12q (κL) arctan

2 4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1

+24q (κL) arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 24q (κL)

}

,

and hence

(23) (LκL)
3
+ a (LκL)

2
+ bLκL + c < 0,

where

a =
12 {1− q (κL)}
4− 3q (κL)

+
9q (κL)

4− 3q (κL)
arctan

4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1
,

b =
24 {1− q (κL)}
4− 3q (κL)

− q (κL)

4− 3q (κL)
arctan

4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1

·
{

9 arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 24

}

,

c =
24 {1− q (κL)}
4− 3q (κL)

+
3q (κL)

4− 3q (κL)
arctan

4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1

·
{

arctan2
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
− 4 arctan

4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1
+ 8

}

.

Since κL > 1 +
√
2 and

κ4 − 6κ2 + 1 =
(

κ2 − 1
)2 − 4κ2 =

(

κ2 + 2κ− 1
) (

κ2 − 2κ− 1
)

=
(

κ+ 1 +
√
2
)(

κ+ 1−
√
2
)(

κ− 1 +
√
2
)(

κ− 1−
√
2
)

,

we have 4κL
(

κ2L − 1
)

/
(

κ4L − 6κ2L + 1
)

> 0, and hence

0 < arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
<
π

2
≈ 1.5708.

Again since κL > 1 +
√
2, we have 0 < q (κL) < 1 by Lemma 1, and hence

1− q (κL)

4− 3q (κL)
> 0,

q (κL)

4− 3q (κL)
> 0.

It follows that a, b, c > 0, which is a contradiction to (23) since LκL > 0. Hence
we have

(24) LκL < arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
.
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By (21) and (24), we have

gL (κL) = LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
+ 2π < 2π.

Since LκL > 0, we have

− arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
< LκL − arctan

4κL
(

κ2L − 1
)

κ4L − 6κ2L + 1
< 0

by (24). So by Lemma 6,

0 ≥ lim
L→0+

{

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

}

≥ − lim
L→0+

arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

= − lim
κL→∞

arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1
= 0,

and hence we have

lim
L→0+

{

LκL − arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

}

= 0.

Thus by (21) again, we have

lim
L→0+

gL (κL) = lim
L→0+

{

LκL − lim
L→0+

arctan
4κL

(

κ2L − 1
)

κ4L − 6κ2L + 1

}

+ 2π = 2π,

which completes the proof. �

Lemma 7 indicates that it is enough to consider the case when gL(κ) < 2π
to prove (3). We will do the change of the variables from κ to t via t = gL(κ)
for κ ≥ 0, or equivalently, κ = g−1

L (t) for t ≥ 0.

Lemma 8. Suppose 0 < t < 2π. Then limL→0+ g
−1
L (t) = ĝ−1(−t), and

g−1
L (t) < ĝ−1(−t) for every L > 0.

Proof. From the definition (7) of gL, we have

(25) L · g−1
L (t)− ĝ

(

g−1
L (t)

)

= t,

Differentiating with respect to L, we have

1 · g−1
L (t) + L · ∂

∂L
g−1
L (t)− ĝ′

(

g−1
L (t)

)

· ∂

∂L
g−1
L (t) = 0,

and hence by (7) and (10),

∂

∂L
g−1
L (t) = − g−1

L (t)

L− ĝ′
(

g−1
L (t)

) = − κ

L− ĝ′(κ)
= − κ

gL′(κ)
< 0,

where we put κ = g−1
L (t). This shows that g−1

L (t) is strictly decreasing with

respect to L for any fixed t, and consequently, g−1
L (t) is strictly increasing as

Lց 0.
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Suppose 0 < t < 2π. If limL→0+ g
−1
L (t) = ∞, then by (8) and (25), we have

2π > t = lim
L→0+

{

L · g−1
L (t)

}

− lim
L→0+

{

ĝ
(

g−1
L (t)

)}

= lim
L→0+

{

L · g−1
L (t)

}

− lim
κ→∞

{ĝ (κ)}

= lim
L→0+

{

L · g−1
L (t)

}

− (−2π) ≥ 2π,

which is a contradiction. So limL→0+ g
−1
L (t) <∞. Note from (25) again that

t = lim
L→0+

L · lim
L→0+

g−1
L (t)− lim

L→0+

{

ĝ
(

g−1
L (t)

)}

= 0− ĝ

(

lim
L→0+

g−1
L (t)

)

,

from which it follows that limL→0+ g
−1
L (t) = ĝ−1(−t). Since g−1

L (t) is strictly

decreasing with respect to L, we have g−1
L (t) < ĝ−1(−t) for every L > 0. �

We remark that, in fact, limL→0+ g
−1
L (t) = ∞ for every t ≥ 2π, whose proof

we omit. For t ≥ 0, define

ψ̃L(t) = ψL

(

g−1
L (t)

)

, q̃L(t) = q
(

g−1
L (t)

)

.

The functions ψ̃L and q̃L can be considered as “mollified” versions of ψL and
q as Lց 0. From the definitions of ψL and ψ̃L, we have

(26) ψ̃L(t) = eL·g−1

L
(t)f (cos t) > f (cos t) for t > 0.

Note that ĝ−1 (−3π/2) = 1+
√
2 by (8), and g−1

L (3π/2) is strictly increasing

to ĝ−1 (−3π/2) = 1+
√
2 as L goes down to 0 by Lemma 8. It follows that, for

every sufficiently small L > 0, we have g−1
L (t) > 1 for 3π/2 < t < 2π. Since q

is strictly increasing on (1,∞) by Lemma 1, we have

q̃L(t) = q
(

g−1
L (t)

)

< q
(

ĝ−1(−t)
)

for 3π/2 < t < 2π

for every sufficiently small L > 0
(27)

by Lemma 8.

Lemma 9. For every sufficiently small L > 0, ψ̃L(t) > q̃L(t) for 3π/2 < t <
2π.

Proof. By (26) and (27), it is enough to show that f (cos t) > q
(

ĝ−1(−t)
)

for

3π/2 < t < 2π. Suppose 3π/2 < t < 2π. Note that κ := ĝ−1(−t) > 1 +
√
2 by

(8). So by (8) again, we have

−t = ĝ(κ) = −2π + arctan
4κ
(

κ2 − 1
)

κ4 − 6κ2 + 1
,

and hence

(28)
4κ
(

κ2 − 1
)

κ4 − 6κ2 + 1
= tan (2π − t) = − tan t.
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Note that, for each t ∈ (3π/2, 2π), we have − tan t > 0, and κ is the unique

positive solution of (28) such that κ > 1 +
√
2. Transform (28) to

− tan t ·
(

κ4 − 6κ2 + 1
)

= 4κ
(

κ2 − 1
)

,

and then to

4

(

κ− 1

κ

)

= − tan t ·
(

κ2 − 6 +
1

κ2

)

= − tan t ·
{

(

κ− 1

κ

)2

− 4

}

.

Putting

(29) x = κ− 1

κ
,

we have 4x = − tan t ·
(

x2 − 4
)

, and hence tan t · x2 + 4x − 4 tan t = 0, which
gives

x =
−2±

√
4 + 4 tan2 t

tan t
=

−2 cos t± 2

sin t
.

Note that sin t < 0 for 3π/2 < t < 2π. Since κ > 1, we have x > 0 by (29),
and hence

(30) x =
−2 cos t− 2

sin t
=

−2 (1 + cos t)

sin t
.

Substituting (30) into (29) again, we have

(31) sin t · κ2 + 2 (1 + cos t)κ− sin t = 0.

Solving (31) for κ, we have

κ =
− (1 + cos t)±

√

(1 + cos t)
2
+ sin2 t

sin t
=

− (1 + cos t)±
√
2
√
1 + cos t

sin t
.

Since κ > 0 and sin t < 0, we finally have

ĝ−1(−t) = κ =
− (1 + cos t)−

√
2
√
1 + cos t

sin t
=

√
1 + cos t+

√
2√

1− cos t
,

and thus by (4),

q
(

ĝ−1(−t)
)

=







√
1+cos t+

√
2√

1−cos t
− 1

√
1+cos t+

√
2√

1−cos t
+ 1







2

=

{√
1 + cos t+

√
2−

√
1− cos t√

1 + cos t+
√
2 +

√
1− cos t

}2

=

{√
1 + cos t+

√
2−

√
1− cos t√

1 + cos t+
√
2 +

√
1− cos t

·
√
1 + cos t+

√
2−

√
1− cos t√

1 + cos t+
√
2−

√
1− cos t

}2

=
1

{

(1 + cos t) + 2
√
2
√
1 + cos t+ 2− (1− cos t)

}2

·
{

(1 + cos t) + (1− cos t) + 2 + 2
√
2
√
1 + cos t
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−2
√
2
√
1− cos t− 2

√
1− cos t

√
1 + cos t

}2

=

{

2
√
2
(√

1 + cos t+
√
2
)

− 2
√
1− cos t

(√
1 + cos t+

√
2
)

2
√
1 + cos t

(√
1 + cos t+

√
2
)

}2

=

{√
2−

√
1− cos t√

1 + cos t

}2

=
3− cos t− 2

√
2
√
1− cos t

1 + cos t
.

By (6), it remains to show that

2− cos t−
√

(2− cos t)
2 − 1 >

3− cos t− 2
√
2
√
1− cos t

1 + cos t

for 3π/2 < t < 2π, which is done by the following series of equivalent transfor-
mations:

− cos2 t+ cos t+ 2− (1 + cos t)

√

(2− cos t)
2 − 1 > 3− cos t− 2

√
2
√
1− cos t,

(1− cos t)
2
+ (1 + cos t)

√

(1− cos t) (3− cos t) < 2
√
2
√
1− cos t,

√
1− cos t

3
+ (1 + cos t)

√
3− cos t < 2

√
2,

(1− cos t)
3
< 8 + (1 + cos t)

2
(3− cos t)− 4

√
2 (1 + cos t)

√
3− cos t,

2 cos2 t− 8 cos t− 10 < −4
√
2 (1 + cos t)

√
3− cos t,

(1 + cos t) (5− cos t) > 2
√
2 (1 + cos t)

√
3− cos t,

cos2 t− 10 cos t+ 25 > 8 (3− cos t) ,

cos2 t− 2 cos t+ 1 > 0,

where we used (17) for the second inequality. �

We now have all the ingredients needed to prove (3), which implies Theo-
rem 1.

Proof of Theorem 1. By Proposition 2, it is sufficient to show (3). Suppose (3)
is false, so that the equation ψL0

(κ) ≤ q(κ) has a positive solution for some
L0 > 0. Then by Lemma 4, there exists κL satisfying ψL (κL) ≤ q (κL) and
ψL

′(κL) = q′ (κL) for 0 < L < L0. Let tN := gL (κL) for 0 < L < L0. By
Lemma 7, we have 3π/2 < tL < 2π for every sufficiently small L > 0. So by

Lemma 9, we have ψ̃L (tL) > q̃L (tL), and hence

ψL (κL) = ψL

(

g−1
L (tL)

)

= ψ̃L (tL) > q̃L (tL) = q
(

g−1
L (tL)

)

= q (κL)

for every sufficiently small L > 0. This is a contradiction to the result that
ψL (κL) ≤ q (κL) for 0 < L < L0. Thus we conclude that (3) is true. �
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