• Title/Summary/Keyword: Spring Stiffness

Search Result 671, Processing Time 0.029 seconds

The Effects of the Human-body Stiffness on the Response of the Footbridge (사람의 강성이 교량의 거동에 미치는 영향)

  • 신혜린
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.261-266
    • /
    • 2000
  • This paper consider the effects of the human-body stiffness on the response of the footbridge to ground shaking by an earthquake. A mass-spring, suggested by Tianjian Ji(1999), describing the stiffness of the human body and an inert mass specified in the Code as the appropriate human whole-body model are used and the responses of the structure in both cases to ground shaking are were compared. Finally this paper ascertains whether the consideration of the human body as a mass is safe in the aseismic design.

  • PDF

Rail Pressure on the Changing Point of Track Modulus (궤도강성변화구간의 레일압력 분포에 관한 연구)

  • 이기승;천진녕;김성칠;권순섭
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.228-233
    • /
    • 2002
  • The transition between bridge or tunnel and plain track has different rail pressure and distributed stress on formation. This paper shows distribution of rail pressure on transition at which spring stiffness are changed. By this study, it is revealed that the changing into relatively high stiffness causes increased rail pressure visibly and draw up dynamic track force. A medium stiffness structure and reinforced rail could be effective for reducing track force on the transition.

  • PDF

Establishment of Design Variable of Leg Stiffness Artificial Tendon Actuator ($LeSATA^{TM}$) for Actual Control in Dorsiflexion of Metatarsophalangeal Joint at the Initial Contact while the Bi-pedal Human Walking : (1) Realization of Lagrangian Equation and Impulsive Constraint (2족 보행시 중족지절관절 초기접지기 배측굴곡의 능동적 통제를 위한 Leg Stiffness Artificial Tendon Actuator($LeSATA^{TM}$)의 설계변수 확립 : (1) Lagrangian 방정식 및 Impulsive Constraint 적용법 구현)

  • Kim, Cheol-Woong;Han, Gi-Bong;Eo, Eun-Kyoung
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2010.11a
    • /
    • pp.651-652
    • /
    • 2010
  • PDF

Nonlinear Modeling of RC Shear Walls Using Fiber and Shear Spring Elements (전단스프링과 섬유요소를 이용한 철근콘크리트 전단벽의 비선형 해석모델에 관한 연구)

  • Lee, Kwang-Ho;You, Tae-Sang;Kim, Tae-Wan;Jeong, Seong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.559-566
    • /
    • 2012
  • In this study, fiber elements and a spring are used to build a reinforced concrete shear wall model. The fiber elements and the spring reflect flexural and shear behaviors of the shear wall, respectively. The fiber elements are built by inputting section data and material properties. The spring parameters representing strength and stiffness degradation, pinching, and slip were determined by comparing behaviors of fiber element and VecTor2 results. 'Pinching4' model in OpenSees is used for shear spring. The parameter selecting process for shear spring is a complicated and time consuming process. To study the applicability of the fiber element, reinforced concrete buildings containing a shear wall are evaluated using nonlinear dynamic analysis with various wall aspect ratio (H/L), various beam heights, and stiffness and flexural strength of beam and wall ratios. The aspect ratio of the wall showed distinct difference in IDR (interstory drift ratio) of the models with and without spring. On the other hand, the height of beam and ratio of stiffness and flexural strength of beam and wall did not show clear relation.

Stiffness Test of Dowel Bar for fainted Concrete Pavement (콘크리트 포장의 다웰바 전단거동 실험)

  • Yang, Sung-Chul;Choi, Jae-Gon
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 2008
  • Shear test procedure for concrete-dowel interaction was proposed along with determination of dowel support reaction factor or shear spring stiffness constant using the spreadsheet example. For this task, three AASHTO-type standard specimens were prepared to simulate behavior of the jointed concrete pavement. A side support system was adopted to minimize twisting of the test specimen which had been observed in a preliminary test. A typical elastic behavior of the dowel-concrete interaction was observed from several test loops of loading, unloading and reloading procedures. However load versus slab displacement represents to be nonlinear. Test results show that the dowel support reaction factor ranges from 550-880 GN/m3, which is 1.4-2.2 times greater than 407GN/m3 proposed by Yoder and Witczak. This is because less torsional distraction was occurred with the help of a side support system adopted in this experiment. The dowel support reaction factor or shear spring stiffness constant obtained from the procedures proposed in this paper may be used as a reference data for the structural analysis of jointed concrete pavement.

  • PDF

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').

Non-linearity characteristics consideration of the Disc Spring under Shock using Numerical Analysis (수치해석을 통한 충격 시 접시 스프링의 비선형 특성 고찰)

  • Bang, Seung-Woo;Lee, Hae-Jin;Kwon, O-Cheol;Lee, Jung-Youn;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1266-1271
    • /
    • 2007
  • General coil spring has linearity. However, disc spring has non-linearity so that using this non-linearity disc spring can be designed to do shock-absorbing in cases we need because shock response also has non-linearity. By changing the shape and stacking number, it is satisfactory with response of displacement, velocity and acceleration. Conventionally, disc spring was used to control the vibration against huge load and limited space. However, it is limitedly used because of difficulty of the designing guidance. Therefore, disc spring is needed to study further in order to apply it widely. Response of disc spring is compared to response of coil spring by changing ho/t radio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and effect of ho/t and stiffness is analyzed to broad usage so that design factor of disc spring is presented.

  • PDF

Non-linearity Characteristics Consideration of the Disc Spring Under Shock Using Numerical Analysis (수치해석을 통한 충격 시 접시 스프링의 비선형 특성 고찰)

  • Bang, Seung-Woo;Lee, Hae-Jin;Sim, Hyun-Jin;Park, Sang-Gil;Lee, Jung-Youn;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • General coil spring has linearity. However, disc spring has non-linearity so that using this non-linearity disc spring can be designed to do shock-absorbing in cases we need because shock response also has non-linearity. By changing the shape and stacking number, it is satisfactory with response of displacement, velocity and acceleration. Conventionally, disc spring was used to control the vibration against huge load and limited space. However, it is limitedly used because of difficulty of the designing guidance. Therefore, disc spring is needed to study further in order to apply it widely. Response of disc spring is compared to response of coil spring by changing $h_o/t$ ratio with computer simulation and the usage of disc spring is increased through analysis of effect of design factors. The purpose of this paper is that the shock response of disc spring is calculated through numerical simulation and effect of $h_o/t$ and stiffness is analyzed to broad usage so that design factor of disc spring is presented.

Analysis on The Properties of Conical Rubber Spring for Railway Rolling-stock (철도차량용 코니컬 고무스프링 특성 분석 연구)

  • Hur, Hyun-Moo;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1578-1583
    • /
    • 2007
  • The suspension system of railway rolling-stock is composed of the primary and secondary suspension elements. Recently, a conical rubber spring is widely used as the primary suspension element due to the merits of the three directional stiffness characteristics. So, understanding the properties and characteristics of the conical rubber spring is very important from the viewpoint of vehicle stability and efficient maintenance. Thus, this study is started to acquire the basic data for maintaining spring elements efficiently. For this, we tested the conical rubber spring samples including a new and old specimen with aging. As a test result, we have obtained the property characteristics of the aged spring comparing with the new product and we describe the results.

  • PDF