• Title/Summary/Keyword: Spring Force

Search Result 861, Processing Time 0.025 seconds

Influence of Successive Two Moving Spring-Mass Systems on Dynamic Behavior of a Simple Beam Subjected to Uniformly Distributed Follower Forces (연속이동 스프링-질량계가 등분포종동력을 받는 단순보의 동특성에 미치는 영향)

  • 유진석;윤한익;강혁준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.82-88
    • /
    • 2002
  • A simple beam subjected to a uniformly distributed tangential follower force and the successive two moving spring-mass systems upon it constitute this vibration system. The influences of the velocities of the moving spring-mass system, the distance between the successive two moving spring-mass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simple beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simple beam without the successive two moving spring-mass systems, and three kinds of constant velocities and constant distance of the successive two moving spring-mass systems are also chosen. Their coupling effects on the transverse vibration of the simple beam are inspected too.

  • PDF

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

A Study on the Dynamic Characteristics of the Gas Spring on the Automotive Application (차량 장착상태에서의 가스 스프링 동적 특성 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.15-20
    • /
    • 2015
  • Unlike a typical metal spring, a gas spring uses compressed gas contained in a cylinder and compressed by a piston to exert a force. A common application includes automobiles where gas spring are incorporated into the design of open struts that support the weight of tail gate. They are also used in furniture such as office chairs, and in medical and aerospace applications. The gas spring works by the application of pressurized gas (nitrogen) contained in a cylinder. The internal pressure of the gas spring greatly exceeds atmospheric pressure. This differential in pressure exists at any rod position and generates an outward force on the rod, making the gas spring extend. In this paper, we investigated the dynamic characteristics of a gas spring on an automotive tail gate system.

Impact of Lumen Size and Helical Coil Place Change in Spring on Orthodontic Force (Spring의 lumen size와 helical coil 형성 위치 변화가 교정력에 미치는 영향)

  • Lee, Gyu-Sun;Lee, Sun-Kyoung;Kim, Bok-Dong
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.331-337
    • /
    • 2011
  • Purpose: The purpose of this study was to impact of force system change in finger spring that add helical coil one round on orthodontic force. Methods: The following conclusions were drawn from the experiment conducted after bending 90 samples with a CNC wire forming machine while changing the height and lumen size to 1mm - 3mm - 5mm and 2mm - 3mm - 4mm respectively in the coil of the force system in finger spring added with one wheel of helical coil of 18-8 stainless steel round wire (${\Phi}0.5mm$, spring hard) from Jinsung Co. in domestic market under the following conditions: Laboratory name = Instron 5942; Temperature($deg^{\circ}C$) = 18.00; Humidity(%) = 50.00; Rate 1 = 10.00000 mm/min; Compressive extension = 5.0mm. Results: When Coil height is 1, 3, 5mm and lumen size is 2, 3, 4mm reduce finger spring as mean value of compressive extension occasion maximum load(mN) increases as coil height rises, and lumen size grows to 5.0mm. And was expose that compressive load(mN) increases as coil position of finger spring rises and increase as lumen size is decrescent. Conclusion: As the adherence height of coil was raised from 1mm through 3mm to 5mm, compressive load increased. As the lumen size increased from 2mm through 3mm to 4mm, compressive load decreased. Therefore, these results suggest that it is desirable to lower the coil height and enlarge the lumen size to enhance the biomechanical efficiency of finger spring when manufacturing the finger spring for removable orthodontic devices.

A Study on the Control of Spring Back for the Precision Forming of the Steam Generator Helical Tube (나선형 증기 발생기 튜브의 정밀성형을 위한 스프링백 제어 연구)

  • 서영성;김용완;김종인
    • Transactions of Materials Processing
    • /
    • v.11 no.3
    • /
    • pp.238-245
    • /
    • 2002
  • The spring back taking place after the coiling process of steam generator tube leads to the dimensional inaccuracy. In order to reduce the spring back, tension force was applied to the one end of the tube during forming. In this work, parametric study using FEM was performed to find the appropriate magnitude of tension force. The force that induces minimum spring back was found by simultaneously taking account if spring back amount, cross-sectional ovality, and thickness of the tube wall after deformation. In addition, stress relieving by heat treatment was also simulated as an alternative to the former method. The latter was found to be more effective under the given constraints.

Analysis and Design of Constant-Force Mechanisms Using a Linear Spring (선형 스프링을 이용한 상력 메커니즘의 분석 및 설계)

  • Kim, Whee-Kuk;Kim, Hae-Soo;Kim, Min-Gun;Yi, Byung-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.215-222
    • /
    • 2003
  • In this paper, kinematic analysis and design of constant force mechanisms which employ a linear spring are studied. Firstly, sufficient conditions for the mechanisms to be the constant force mechanisms are derived in terms of displacement variables through the kinematic analysis. Secondly, a few conceptual mechanisms satisfying these constraints are proposed.

Effectiveness of a Heat Transfer Characteristics of an Auxiliary Chamber for Performance of an Air Spring (보조용기의 열전달특성이 공기스프링의 성능에 미치는 영향)

  • Jang, Ji-Seong
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.121-127
    • /
    • 2013
  • The air spring is used widely because of the easy change of spring constant, and, a superior vibration and shock insulation performance. Among the apparatus using the merits of that, the air spring connected an auxiliary chamber has been developed and used as a component of suspension system for an automobile and a railroad car. The purpose of this study is to suggest a design method reflecting heat transfer effect for an air spring system connected auxiliary chamber. In order to do so, this study investigates change of reaction force along with variations in heat transfer coefficient, and, analyzes an effectiveness of a heat transfer characteristics of an auxiliary chamber for external force attenuation characteristics and impedance characteristics of an air spring connected an auxiliary chamber.

Measurement and Design Review of Contact Force by Garter Spring in Connection between Circuit Breaker and Bus Bar (차단기와 모선과의 연결시 가터스프링에 의한 접촉력의 측정 및 설계 고찰)

  • 조상순;안길영;박우진;오일성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.942-945
    • /
    • 2002
  • A garter spring, which is a long. special, close-coiled extension spring with its ends joined to form a ring, is used in connection between vacuum circuit breaker and bus bar in switchgear. To carry short-time current and resist welding at the contact surface in the connection, the garter spring must transmits an uniform contact force to the contact surface through the contact chips arranged in the circumference of bus bar. In this paper, the system for measurement of the contact force by the garter spring is developed. Using the developed measurement system, the design of the connection structure including the garter spring is reviewed to obtain the uniform contact forces in all of contact chips.

  • PDF

Accurate Determination of Spring Constants of Micro Cantilevers for Quantified Force Metrology in AFM (AFM에서의 정량적 힘 측정을 위한 마이크로 캔틸레버의 강성 교정)

  • Kim, Min-Seok;Choi, Jae-Hyuk;Kim, Jong-Ho;Park, Yon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.96-104
    • /
    • 2007
  • Calibration of the spring constants of atomic force microscopy (AFM) cantilevers is one of the issues in biomechanics and nanomechanies for quantified force metrology at pieo- or nano Newton level. In this paper, we present an AFM cantilever calibration system: the Nano Force Calibrator (NFC), which consists of a precision balance and a one-dimensional stage. Three types of AFM cantilevers (contact and tapping mode) with different shapes (beam and V) and spring constants (42, 1, 0.06 N $m^{-1}$) are investigated using the NFC. The calibration results show that the NFC can calibrate the micro cantilevers ranging from 0.01 ${\sim}$ 100 N $m^{-1}$ with relative uncertainties of less than 2%.

Optimum Shape Design of the Spring to Improve the Loose-proof Performance of the Lock Nut (로크 너트의 풀림 방지 성능 향상을 위한 스프링의 최적 형상 설계)

  • Song, Hyun-Seok;Chung, Won-Sun;Jung, Do-Hyun;Seo, Young-Kyo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.91-96
    • /
    • 2010
  • The combination of a bolt and nut is the element most widely used for connecting machines and structures. When a load is repetitively applied in the direction right angle to the bolt axis after the bolt and nut is fastened, the nut gradually becomes loose. To solve this problem, in this study, a new type of the loose-proof nut, called a lock nut, is developed. The lock nut is equipped with a spring, and the spring increases the axial force of the bolt. Then, the connection force between the bolt and nut is also augmented. Three dimensional finite element models for the bolt and spring are generated, and the change of the axial force of the bolt while the bolt is being inserted into the spring is analyzed using MSC/Marc, a commercial finite element program. Finally, the optimum shape of the spring is found according to the response surface analysis methodology. The optimization result is verified by comparing the variation of the axial force of the bolt when the bolt is inserted to the initial and optimized spring.