• 제목/요약/키워드: Spraying powder

검색결과 159건 처리시간 0.032초

액화석유가스를 이용한 파우더 함유 화장품의 분사안정성에 관한 연구 (Study on the sprayability of the skincare product with powders using LPG as propellant)

  • 김화용;박찬익;배원
    • 한국가스학회지
    • /
    • 제8권1호
    • /
    • pp.7-12
    • /
    • 2004
  • 고압가스나 액화석유가스를 분사제로 사용하는 화장품에서는 원액의 안정성 및 용기의 안정성 뿐만 아니라 원액이 완전히 소진될 때까지 분사가 이루어져야 하며 특히 내용물에 파우더나 고분자 물질이 함유되어있을 경우 노즐이 막히게 될 수 있다. 따라서 본 연구에서는 액화석유가스를 분사제로 활용하는 화장품에 파우더가 함유되어있을 경우 분사안정성에 관해 제형 설계를 이용하여 노즐의 막힘 현상을 없애는 연구를 수행하였으며 또한 완전분사가 가능한지 여부를 실제 실험으로 확인하였다. 노즐의 막힘 현상을 없애기 위해서는 원액과 액화석유가스가 적어도 분사하는 시간동안은 균일하게 섞여있는 상태인 유화상태로 존재하여야 함을 알 수 있었으며 이러한 상태는 폴리올의 양 및 계면활성제의 양 등에 의해 결정되었다. 사용감 및 자극 등의 화장품적 특성을 고려할 때 계면활성제의 양을 조절함으로써 효과적으로 원액과 액화석유가스의 균일한 유화상태를 얻을 수 있었으며 이때 파우더가 가장 균일하게 분산되며 따라서 노즐의 막힘 현상이 최소화됨을 알 수 있었다.

  • PDF

Plasma spray 공정을 이용한 BCuP-5 filler 금속/Ag 기판 복합 소재의 제조, 미세조직 및 접합 특성 (Fabrication, Microstructure and Adhesive Properties of BCuP-5 Filler Metal/Ag Plate Composite by using Plasma Spray Process)

  • 윤성준;김영균;박재성;박주현;이기안
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.333-338
    • /
    • 2020
  • In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/㎠. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y.;Yoon, J.H.;Kim, K.S.;Fang, W.;Joo, Y.K.;Song, K.O.;Youn, S.J.;Hwang, S.Y.;Chun, H.G.
    • 한국표면공학회지
    • /
    • 제40권4호
    • /
    • pp.170-174
    • /
    • 2007
  • High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

RULA 평가기법을 활용한 분말소화기 디자인 연구 (A Study on Powder Fire Extinguisher Design with RULA Technique Used)

  • 강채우;김덕남
    • 한국안전학회지
    • /
    • 제32권2호
    • /
    • pp.117-123
    • /
    • 2017
  • This study was intended to find methods of fire extinguishing system designs that can improve the equipment's usability. In this study, the fire suppression experiment through fire extinguishers and the data drawn through the experiment were analyzed, and then the guideline for the improvement of designs was presented. The procedure is as follows. A fire suppression experiment with the use of fire extinguishers was done by 43 average adults. The whole process of the fire suppression was videotaped, and then captured major scenes were analyzed with the use of RULA, a human engineering measurement tool. The analyzed data were divided into 4 steps, and then the guideline for design improvement was presented. The summary of the study is as follows. Step 1, Fire extinguisher distance step. To reduce overload occurring at the process of holding fire extinguishers suddenly, wheels are attached to the body of extinguishers, or pedestals are installed. Step 2, Fire extinguisher transportation step. The length of hose is extended, or fire fighting water is sprayed far, so that overload of legs occurring at the process of travel can be reduced. In addition, the weight of fire extinguisher shouldn't be over 2 kg. Step 3, Safety pin removal stage. Safety pins should be applied with button type, so that excessive posture of lower limbs and excessive twisting of wrists won't happen during safety pin removal process. Besides, safety pins should be designed for easy identification and operation. Step 4, Fire extinguishing agent spraying step. To reduce overload occurring at sudden spraying of fire fighting water, pressure should be increased gradually until high pressure. With the above study results applied to existing fire extinguisher design, it may contribute to reducing any fire damage.

Warm spray를 이용한 알루미늄-알루미나 복합 코팅층의 제조 및 특성 (Manufacturing and Properties of Al-Al2O3 Composite Coating Layer Using Warm Spray Process)

  • 권의표;이종권
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.374-380
    • /
    • 2017
  • Properties of coatings produced by warm spray were investigated in order to utilize this technique as a repair method for Al tire molds. $Al-(0-10%)Al_2O_3$ composite powder was sprayed on Al substrate by warm spraying, and the microstructure and mechanical properties of the composite coating layer were investigated. For comparative study, the properties of the coating produced by plasma spray, which is a relatively high-temperature spraying process, were also investigated. The composite coating layers produced by the two spray techniques exhibited significantly different morphology, perhaps due to their different process temperatures and velocities of particles. Whereas the $Al_2O_3$ particles in the warm sprayed coating layer maintained their initial shape before the spray, flattened and irregular shape $Al_2O_3$ particles were distributed in the plasma sprayed coating layer. The coating layer produced by warm spray showed significantly higher adhesive strength compared to that produced by plasma spray. Hardness was also higher in the warm sprayed coating layer compared to the plasma sprayed one. Moreover, with increasing the fraction of $Al_2O_3$, hardness gradually increased in both spray coating processes. In conclusion, an $Al-Al_2O_3$ composite coating layer with good mechanical properties was successfully produced by warm spray.

The Fabrication of Thermal Sprayed Photocatalytic $TiO_{2}$ Coating on Bio-degradable Plastic

  • Bang, Hee-Seon;Bang, Han-sur
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 춘계학술발표대회 개요집
    • /
    • pp.387-392
    • /
    • 2005
  • For the production of further functional bio-degradable plastic(polybutylene succinate:PBS) with $TiO_{2}$ as photocatalyst, which shows the decomposition of detrimental organic compound and pollutant under ultraviolet irradiation, we attempted to prepare $TiO_{2}$ coatings on PBS substrate by HVOF and plasma spraying techniques under various conditions. The microstructures of coatings were characterized with SEM and XRD analysis, and the photocatalytic efficiency of coatings was evaluated through the photo degradation of gaseous acetaldehyde. The effects of primary particle size and spraying parameters on the formation behavior, photo catalytic performance and mechanical characteristics of the coatings have been investigated. The results indicated that with respect to both the HVOF sprayed $P_{200}$ and $P_{30}$ coatings, the high anatase ratio off 100% can be achieved regardless of fuel gas pressure. On the other hand, the HVOF sprayed $P_{7}$ coating exhibited largely decreased anatase ratio (from 100% to 49.1%) with increasing the fuel gas pressure, which may be attributed to the much higher susceptibility to heat of 7nm agglomerated powder. In terms of photocatalytic efficiency, HVOF sprayed $P_{200}$ and $P_{30}$ coatings seem to predominate as compared to that of plasma sprayed $P_{200}$ coatings owing to the higher anatase ratio. However, the HVOF sprayed $P_{7}$ coatings didn't show the photo catalytic activity, which may result from the extremely small reaction surface area to the photo-catalytic activity and low anatase ratio. Such functional PBS with new roles is expected to cosiderably contribute to the reduction of aggravated environmel problem.

  • PDF

고체산화물 연료전지를 위한 플라즈마 용사코팅 Ni/YSZ 음극 복합체의 특성평가 (Characterization of Ni/YSZ Anode Coating for Solid Oxide Fuel Cells by Atmospheric Plasma Spray Method)

  • 박수동;윤상훈;강기철;이창희
    • Journal of Welding and Joining
    • /
    • 제26권4호
    • /
    • pp.50-54
    • /
    • 2008
  • In this research, anode for SOFC has been manufactured from two different kinds of feedstock materials through thermal spraying process and the properties of the coatings were characterized and compared. One kind of feedstock was manufactured from spray drying method which includes nano-components of NiO, YSZ (300 nm) and graphite. And the other is manufactured by blending the micron size NiO coated graphite, YSZ and graphite powders as feedstock materials. Microstructure, mechanical properties and electrical conductivity of the coatings as-sprayed, after oxidation and after hydrogen reduction containing nano composite which is prepared from spray-dried powders were evaluated and compared with the same properties of the coatings prepared from blended powder feedstock. The coatings prepared from the spray dried powders has better properties as they provide larger triple phase boundaries for hydrogen oxidation reaction and is expected to have lower polarization loss for SOFC anode applications than that of the coatings prepared from blended feedstock. A maximum electrical conductivity of 651 S/cm at $800^{\circ}C$ was achieved for the coatings from spray dried powders which much more than that of the average value.

고속화염용사코팅으로 제조된 WC-CoFe 코팅의 기계적 특성에 관한 연구 (The Mechanical Properties of WC-CoFe Coating Sprayed by HVOF)

  • 주윤곤;조동율;하성식;이찬규;천희곤;허성강;윤재홍
    • 열처리공학회지
    • /
    • 제25권1호
    • /
    • pp.6-13
    • /
    • 2012
  • HVOF thermal spray coating of 80%WC-CoFe powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and hard ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen by chrome plating and the brittleness of ceramics coatings. 80%WC-CoFe powder was coated by HVOF thermal spraying for the study of durability improvement of the high speed spindle such as air bearing spindle. The coating procedure was designed by the Taguchi program, including 4 parameters of hydrogen and oxygen flow rates, powder feed rate and spray distance. The surface properties of the 80%WC-CoFe powder coating were investigated roughness, hardness and porosity. The optimal condition for thermal spray has been ensured by the relationship between the spary parameters and the hardness of the coatings. The optimal coating process obtained by Taguchi program is the process of oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min and spray distance 8 inch. The coating cross-sectional structure was observed scanning electron microscope before chemical etching. Estimation of coating porosity was performed using metallugical image analysis. The Friction and wear behaviors of HVOF WC-CoFe coating prepared by OCP are investigated by reciprocating sliding wear test at $25^{\circ}C$ and $450^{\circ}C$. Friction coefficients (FC) of coating decreases as sliding surface temperature increases from $25^{\circ}C$ to $450^{\circ}C$.

플라즈마 용사방식에 의해 형성된 페라이트-탄화규소 표면층의 마이크로파 흡수 특성(II) (Microwave Absorbing Characteristics of Ferrite-silicon carbide surface Films Produced)

  • 신동찬;손현
    • 한국통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.1169-1175
    • /
    • 1993
  • 레이다의 추적 및 탐색으로 부터 비행 물체를 보호하기 위한 목적으로, 알루미늄 합금표면에 페라이트-탄화규소 복합물인 마이크로파 흡수층을 플라즈마 용사방식으로 제작하였다. 본 논문에서는 페라이트-탄화규소층(I) 제조시 사용했던 탄화규소 입자의 평균크기인 34[rm]대신에15[rm]가 사용되었으며, 플라즈마 용사변수들 중에서 분말의 공급비율은 70[Kg/h]대신에 50[Kg/h] 그리고, 용사거리는 80[mm[ 대신에 100[mm]가 사용 되었다. X-band(8~12.4(GHz)레이다용 페라이트-탄화규소 전자파 흡수체를 실험적으로 설계하고 시험제작하여 전기적 특성을 평가한 결과, -lOdB의 반사량을 허용한도로 했을 때 약 2.8%의 대역폭이 얻어졌으며, 최대 흡수두께는 0.5(mm)로 매우 양호한 박층형 전자파 흡수체가 얻어졌다.

  • PDF

Surface Properties, Friction, Wear Behaviors of the HOVF Coating of T800 Powder and Tensile Bond Strength of the Coating on Ti64

  • Cho, T.Y.;Yoon, J.H.;Joo, Y.K.;Cho, J.Y.;Zhang, S.H.;Kang, J.H.;Chun, H.G.;Kwon, S.C.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.11-12
    • /
    • 2008
  • Micron-sized Co-alloy T800 powder was coated on Inconel718 (IN718) using high velocity oxygen fuel (HVOF) thermal spraying by the optimal coating process (OCP) determined from the best surface hardness of 16 coatings prepared by Taguchi program. The surface hardness improved 140-160 % from 399 Hv of IN718 to 560-630 Hv by the coating. Porosity of the coating was 1.0-2.7 %, strongly depending on spray parameters. Both friction coefficients (FC) and wear traces (WT) of the coating were smaller than those of IN718 substrate at both $25^{\circ}C$ and $538^{\circ}C$. FC and WT of IN718 and coating decreased with increasing the surface temperature. Tensile bond strength (TBS) and fracture location (FL) of Ti64/T800 were 8,770 psi and near middle of T800 coating respectively. TBS and FL of Ti64/NiCr/T800 were 8,740 psi and near middle of T800 coating respectively. This showed that cohesion of T800 coating was 8,740-8,770 psi, and adhesion of T800 on Ti64 and NiCr was stronger than the cohesion of T800.

  • PDF