DOI QR코드

DOI QR Code

Friction Behavior of High Velocity Oxygen Fuel (HVOF) Thermal Spray Coating Layer of Nano WC-Co Powder

  • Cho, T.Y. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Yoon, J.H. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Kim, K.S. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Fang, W. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Joo, Y.K. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Song, K.O. (School of Nano Advanced Materials Engineering, Changwon National University) ;
  • Youn, S.J. (Sermatech Korea Co., Ltd.) ;
  • Hwang, S.Y. (Research Institute of Industrial Science & Technology) ;
  • Chun, H.G. (School of Materials Science & Engineering, University of Ulsan)
  • Published : 2007.08.31

Abstract

High Velocity Oxygen Fuel (HVOF) thermal spray coating of nano size WC-Co powder (nWC-Co) has been studied as one of the most promising candidate for the possible replacement of the traditional hard plating in some area which causes environmental and health problems. nWC-Co powder was coated on Inconel 718 substrates by HVOF technique. The optimal coating process obtained from the best surface properties such as hardness and porosity is the process of oxygen flow rate (FR) 38 FMR, hydrogen FR 57 FMR and feed rate 35 g/min at spray distance 6 inch for both surface temperature $25^{\circ}C\;and\;500^{\circ}C$. In coating process a small portion of hard WC decomposes to less hard $W_2C$, W and C at the temperature higher than its decomposition temperature $1,250^{\circ}C$ resulting in hardness decrease and porosity increase. Friction coefficient increases with increasing coating surface temperature from 0.55-0.64 at $25^{\circ}C$ to 0.65-0.76 at $500^{\circ}C$ due to the increase of adhesion between coating and counter sliding surface. Hardness of nWC-Co is higher or comparable to those of other hard coatings, such as $Al_2O_3,\;Cr,\;Cr_2O_3$ and HVOF Tribaloy 400 (T400). This shows that nWC-Co is recommendable for durability improvement coating on machine components such as high speed spindle.

Keywords

References

  1. B. D. Sartwell, R. Kestler, K. O. Legg, W. Assink, A. Nardi, J. Schell, NRL Report No. XYZ, Naval Research Laboratory, Washington DC 20375 (2003) 1-5
  2. B. D. Sartwell, K. O. Legg, J. Schell, J. Sauer, P. Natishan, D. Dull, J. Falkowski, P. Beretz, J. Devereaux, C. Edwards, D. Parker, Naval Research Laboratory Report Number NRLIMR/6170-04-8762, (2004) 1-30
  3. B. D. Sartwell, K. Legg, B. Bodger, HVOF Thermal Spray Coatings as an Alternative to Hard Chrome Plating on Military & Commercial Aircraft, AESF/EPA Conference for Environmental Excellence, 231 (1999) 1-20
  4. J. R. Davis, Handbook of Thermal Spray Technology, ASM International, USA (2004) 1-30
  5. T. Y. Cho, J. H. Yoon, K. S. Kim, N. K. Baek, S. Y Hwang, S. J. Youn, H. G. Chun, HVOF Coating of Co-alloy T800 for the Improvement of the Performance and Durability of Military Hardware Components, 15th Aero Technology Symposium, Logistics Command ROKAF, September 15, 2006
  6. T. Y. Cho, J. H. Yoon, K .S. Kim, S. J. Youn, N. K. Baek, B. C. Park, S. Y. Hwang, H. G. Chun, Kor. Soc., Machine Tool Engineers, 15(6) (2006) 32-37
  7. K. S. Kim, N. K. Baek, J. H. Yoon, T. Y. Cho, S. J. Youn, S. Y. Oh, S. Y. Hwang, H. G Chun, J. Kor. Surface Engineering, 39(4) (2006) 179-189
  8. T. Y. Cho, J. H. Yoon, K. S, Kim, S. J. Youn, N. K. Baek, H. G. Chun, S. Y. Hwang, J. Kor. Inst., Surface Engineering, 39(5) (1966) 240-244
  9. B. Hwang, J. Ahn, S. Lee, Mater. Trans., 33A (2002) 2933
  10. T. Y. Cho, J, H. Yoon, K. S. Kim, B. G. Park, S. J. Youn, N. K. Baek, H. G. Chun, J. Korean Crystal Grow and Crystal Technology, 16(3) (2006) 121-126
  11. T. G. Massalski, et al., Binary Alloy Phase Diagram, Am. Soc. for Metals 1 (1986) 600
  12. A. W. Adamson, Physical Chemistry of Surfaces, 4th Ed. John Wiley and Sons (1982) 404-450

Cited by

  1. Processing optimization, surface properties and wear behavior of HVOF spraying WC–CrC–Ni coating vol.209, pp.7, 2009, https://doi.org/10.1016/j.jmatprotec.2008.08.024
  2. IMPROVING THE SURFACE PROPERTIES OF INCONEL 718 BY APPLYING A CO2 LASER HEAT TREATMENT TO A HIGH-VELOCITY OXY-FUEL COATING OF WC-CrCo POWDER vol.17, pp.02, 2010, https://doi.org/10.1142/S0218625X10013849
  3. A study on HVOF coating of WC-metal powder on super alloy In718 of magnetic bearing shaft material of turbo-blower vol.15, pp.7, 2014, https://doi.org/10.1007/s12541-014-0494-7
  4. HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower vol.12, pp.1, 2013, https://doi.org/10.14773/cst.2013.12.1.007
  5. Surface properties and tensile bond strength of HVOF thermal spray coatings of WC-Co powder onto the surface of 420J2 steel and the bond coats of Ni, NiCr, and Ni/NiCr vol.203, pp.20-21, 2009, https://doi.org/10.1016/j.surfcoat.2009.04.003