• Title/Summary/Keyword: Spore germination

Search Result 222, Processing Time 0.036 seconds

Studies on the Prevention of Gleosporium Thea sinensis on the Tea Plant in Korea (한국산(韓國産) 다수(茶樹)의 엽수병방제(葉銹病防除)에 관(關)한 연구(硏究))

  • Kim, Jai-Saing;Choi, Jai-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.4
    • /
    • pp.357-360
    • /
    • 1987
  • 1. The hair cells on adaxial surface turned out to be penetration way of Gleosporium Thea sinensis in tea plant. 2. The most parts of Gleosporium Thea sinensis generated in tea plant were young leaves with first-fifth leaves from tip of shoot. 3. The proper temperature for spore germination on leaf is $25-27^{\circ}C$, soaked by water for 12 hours. 4. For prevention of Gleosporium Thea sinensis the drug-spay in tea plant would be the most effective when sprayed at this temperature range, and the control of Gleosporium Thea sinensis would be possible through selection of tea plant with few hairs. 5. The treatment of bordeaux mixture to prevent growth of conidiospore was 48.3% more effective than in control plot which were not sprayed. 6. The effect of sprayed bordeaux mixture decreased to about 28.5% after one week of spray.

  • PDF

Evaluation of Streptomyces padanus IA70-5 Strain to Control Hot Pepper Anthracnose (Colletotrichum acutatum) (고추 탄저병 (Colletotrichum acutatum) 방제를 위한 Streptomyces padanus IA70-5의 평가)

  • Chi, Tran Thi Phuong;Choi, Okhee;Kwak, Youn-Sig;Son, Daeyoung;Lee, Jeung Joo;Kim, Jinwoo
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.37-45
    • /
    • 2012
  • To select bacterial strains with antifungal activity against an anthracnose fungal disease causing damage severely on hot pepper, previous isolates obtained from plant root samples were screened. Among 457 isolates, IA70-5 isolate was finally selected and identified as Streptomyces padanus based on 16S rDNA sequence analysis. Strain IA70-5 is non-pigmenteous, non-mobile, and filamentous. S. padanus IA70-5 inhibited effectively the mycelium growth, spore germination, and appressorium formation of Colletotrichum acutatum in vitro. The results of this study demonstrated that IA70-5 strain, especially applied on fruit of hot pepper, decreased disease incidence 90% for pre-inoculation before pathogen treatment. Taken together, S. padanus IA70-5 strain is a promising biological control agent to control of a major fungal pepper disease, anthracnose.

Practical Propagation Methods for Production of Prothalli and Sporophytes in Deparia pycnosora (Christ) M. Kato

  • Jang, Bo Kook;Park, Kyungtae;Cho, Ju Sung;Lee, Cheol Hee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.43-43
    • /
    • 2019
  • Deparia pycnosora (Christ) M. Kato is a fern used as ornamental plant. In addition, it is called "Teol-go-sa-ri" in Korean name. The aim of this study was to develop a practical propagation method of D. pycnosora using tissue culture technique. Prothallus obtained from spore germination was the used as experiment materials. The prothalli (300 mg) used in all experiments were sub-cultured for 8-week intervals. The most suitable media for prothallus propagation were identified by culturing 300 mg of prothalli in $1/4{\times}$, $1/2{\times}$, $1{\times}$, $2{\times}$ MS medium and in Knop medium for 8 weeks. Also, the prothalli were cultured by chopping with a scalpel. In addition, sucrose, activated charcoal, and total nitrogen source were added in different concentrations based on the culture medium selected. Cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $30{\times}1.0{\mu}mol-m-2{\cdot}s-1$, and a photoperiod of 16/8 h (light/dark) in in vitro. The results showed that optimum was achieved prothallus fresh weight and development in $1{\times}$ MS medium. When other components were added to the basic $1{\times}$ MS medium, prothallus propagation was maximized in $1{\times}$ MS medium supplemented with 2% sucrose, 0.2% activated charcoal, and 60 mM total nitrogen. To select a suitable soil mixture for sporophyte formation, 1.0 g of prothallus was blended with distilled water, spread on five combinations of different soil substrates (decomposed granite, horticultural substrates, peat moss, and perlite), and cultivated for 12 weeks. The sporophyte cultures were maintained at a temperature of $25{\pm}1^{\circ}C$, light intensity of $43{\pm}2.0{\mu}mol-m-2{\cdot}s-1$, humidity of $84{\pm}1.4%$, and a photoperiod of 16/8 h (light/dark). As a results, horticultural substrate alone, 2:1 (v:v) mixtures of horticultural substrate and perlite, and 2:1 mixtures of horticultural substrate and decomposed granite induced 208.0, 201.3 and 248.8 sporophytes per pot, respectively. Therefore, this result could provide a practical mass propagation method of D. pycnosora

  • PDF

Inhibition of growth and toxin production of ochratoxigenic Aspergillus spp. by isolated bacteria (분리세균에 의한 ochratoxin 생성 Aspergillus spp.의 생장 및 독소생성 저해)

  • Hwang, Ji-Seon;Choi, Ho-Yeong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.226-233
    • /
    • 2019
  • Ochratoxin A (OTA) that is one of mycotoxins produced mainly by Aspergillus spp. is a common contaminant of stored grains and poses health hazards to human and livestock. The aim of this study is to explore the ability of isolated bacteria Bacillus subtilis AF13 and Streptomyces shenzhenensis YR226 to inhibit growth and OTA production of 3 ochratoxigenic Aspergillus strains. The antifungal activity against mycelial growth and sporulation of Aspergillus strains was examined by coculture with AF13 and YR226 on potato dextrose agar plate. AF13 and YR226 reduced 77.58 and 78.48% of fungal colony radius, respectively, and both strains inhibited fungal sporulation up to 99% in 10 days of incubation. YR226 also reduced more than 91% of spore germination of 3 fungal strains. When Aspergillus strains were cocultured with AF13 or YR226 in yeast extract sucrose medium, mycelial growth and OTA production decreased in all three fungal strains. In particular, AF13 completely inhibited the mycelial growth of A. alutaceus and inhibited its OTA production by 99%, and YR226 also reduced mycelial growth and toxin production up to 99%, respectively. Antimicrobial substances produced by AF13 and YR226 included siderophore, chitinase, protease, ${\beta}$-1,3-glucanase and biosurfactant. These results suggest that AF13 and YR226 can be used in a biological method to prevent valuable crops against mycotoxigenic fungi, and therefore decrease economic damage in agriculture and feed industry.

The complete genome sequence of a marine sponge-associated bacteria, Bacillus safensis KCTC 12796BP, which produces the anti-allergic compounds (해양 해면체로부터 분리한 세균으로 항알러지성물질을 생산하는 Bacillus safensis KCTC 12796BP의 유전체 해독)

  • Hanh, Nguyen Phan Kieu;Kim, Soo Hee;Kim, Geum Jin;Choi, Hyukjae;Nam, Doo Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.448-452
    • /
    • 2018
  • The full genome sequence of Bacillus safensis KCTC 12796BP which had been isolated from the marine sponge in the seawater of Jeju Island, was determined by Pac-Bio next-generation sequencing system. A circular chromosome in the length of 3,935,874 bp was obtained in addition to a circular form of plasmid having 36,690 bp. The G + C content of chromosome was 41.4%, and that of plasmid was 37.3%. The number of deduced CDSs in the chromosome was 3,980, whereas 36 CDS regions were determined in a plasmid. Among the deduced CDSs in chromosome, 81 tRNA genes and 24 rRNA genes in addition to one tmRNA were allocated. More than 30 CDSs for sporulation, 16 CDSs for spore coat, and 20 CDSs for germination were also assigned in the chromosome. Several genes for capsular polysaccharide biosynthesis and for flagella biosynthesis and chemotaxis in addition to genes for osmotic tolerance through glycine-choline betaine pathway were also identified. Above all, the biosynthetic gene cluster for anti-allergic compounds seongsanamides were found among two non-ribosomal peptide synthetase (NRPS) gene clusters for secondary metabolites.

Suppressive Mechanism of Soil-borne Disease Development and its Practical Application -Isolation and Identification of Species of Trichoderma Antagonistic to Soil diseases and its activities in the Rhizosphere- (토양병의 발병억제 기작과 그 실용성 -길항성 Trichoderma spp.의 분리, 동정 및 근권내 활동-)

  • Kim, S.I.;Shim, J.O.;Shin, H.S.;Choi, H.J.;Lee, M.W.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.337-346
    • /
    • 1992
  • Trichoderma spp. are an effective control agent for damping-off or other plant diseases. The interaction between. T. hamatum and Rhizoctonia solani on the rhizosphere or surface soil were examined to assess the possible roles of antibiosis or competition in the mechanisms of biological control agents as a basic research. In a proportional comparison, total bacteria, fungi, actinomycetes and Trichoderma spp were 65%, 8.8%, 25.9% and 0.28% respectively in their distribution in the soil. Among Trichoderma spp isolated, the 5 species of Trichoderma spp were indentified as T. koninggii, T. pseudokoninggii, T. aureoviridi, T. hamatum and T. viride respectively. In a mycoparasitic test, one isolate of T. hamatum strain Tr-5 showed an enzymatic ability to break fungal hyphae into piecies and infected on the R. solani hyphae showing a parasitism. Spore germination of the all isolates of Trichoderma spp showed a 1.7-7.3% of germination in natural soil conditions, but the percentage was high in sterile soil indicating all the natural soil were fungistatic on conidia of Trichoderma spp. In rhizosphere competent assay in pea plant, the antagonistic T. hamatum, T. viride, T. koninggii, T. pseudokoninggii showed a colonizing upper soil depth in rhizosphere around 1-3 cm in root zone, but the colonizing ability was much reduced along the deeper the soil depth. Propagule density was decreased in deeper the soil layer. Disease development rate treated alone with plant pathogens, Fusarium solani, Rhizoctonia solani, Cylindrocarpon destructans increased, but disease incidence rate reduced in treatment with combinations with antagonistic T. hamatum strain Tr-5.

  • PDF

Selection of fungicides to control leaf spot of jujube (Zizyphus jujuba) trees caused by Phoma sp. (Phoma sp.에 의한 대추나무 점무늬병 방제용 살균제 선발)

  • Lee, Bong-Hun;Lim, Tae-Heon;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.40-46
    • /
    • 2000
  • To select the effective fungicides for the control of leaf spot disease of jujube tree (Zizyphus jujuba) caused by Phoma sp., inhibitory effects of 26 fungicides for mycelial growth were investigated at $250{\mu}g\;a.i./m{\ell}$. In the test, eight fungicides were selected and minimum inhibitory concentration (MIC) for mycelial growth and an inhibitory effect for spore germination were investigated. Among the fungicides, myclobutanil, hexaconazole, and triflumizole were excluded in control effect tests because of their relatively high MICs. MICs were ranged $10-50{\mu}g\;a.i./m{\ell}$ for benomyl, carbendazim + kasugamycin (CK), and thiophanate-methyl. triflumizole (TT), and $50-250{\mu}g\;a.i./m{\ell}$ for iprodione + propineb (IT) and iminoctadine-triacelate (IT). However, benomyl and IP showed very low inhibitory effect on conidial germination. When the fungicides were sprayed on the seedlings before the leaves were inoculated with conidial suspension of Phoma sp., the protective values of CK and TT were around 70% at 1,000 ppm and around 90% at 2,000 ppm. The protective values were around 70% at 2,000 ppm (benomyl), 4,000 ppm (IP), and 8,000 ppm (IT). When the fungicides were sprayed after inoculation, benomyl showed the highest curative values of over 90% at 1,000 ppm and the values of CK and TT ranged $70{\sim}80%$ at 1,000 ppm. However, IP and IT had little or no effect on therapy of the disease. IT caused necrotic phytotoxicity on the leaves of jujube seedlings. As results, the best fungicides for the protection of jujube trees from leaf spot disease were CK (2,000 ppm) and TT (2,000 ppm) and for the remedy of the tree, benomyl (1,000 ppm) was the best. Therefore, alternate application of benomyl and CK or TT will be effective in the disease control.

  • PDF

Growth Inhibition Effect of Environment-friendly Farm Materials on Fungal Pathogens of Grape (친환경농자재의 포도 진균병 병원균에 대한 생장억제 효과)

  • Kim, Geon-Ju;Choi, Min-Kyung;Park, Jong-Han;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.14 no.3
    • /
    • pp.187-192
    • /
    • 2008
  • Five environment-friendly farm materials including $Chitomate^{(R)}$, $Diegyun^{(R)}$, IC-$66D^{(R)}$, Gold $Bordo^{(R)}$, and $Biospot^{(R)}$ were examined for their growth inhibition effect of the 7 fungal pathogens of grape in vitro. $Diegyun^{(R)}$, being composed of natural ingredients which are extracted from a plant, was the most effective in suppression of mycelial growth of the fungi. $Diegyun^{(R)}$ inhibited the mycelial growth of all of fungi over 75% at $2,500{\mu}g{\cdot}mL^{-1}$ on potato dextrose agar(PDA) except Colletotrichum gloeosporioides 04-159. Growth inhibition effect of $Chitomate^{(R)}$, being composed of the chitosan, varied depending on the fungal pathogens on PDA. It inhibited the mycelial growth of the Botrytis cinerea 06-063 at the rate of 75.8% at $40,000{\mu}g{\cdot}mL^{-1}$ on PDA while it inhibited the mycelial growth of the C. gloeosporioides 04-159 at the rate of 6.5%. IC-$66D^{(R)}$ and Gold $Bordo^{(R)}$ are two different formula of the Bordeaux mixture, showed different control effects on mycelial growth inhibition. Except of Acremonium sp. the growth inhibition of IC-$66D^{(R)}$ was a little higher than Gold $Bordo^{(R)}$. $Biospot^{(R)}$, a chlorine formula, showed the strongest growth inhibition on C. gloeosporioides 04-159 among the farm materials used. Inhibition of spore germination of $Chitomate^{(R)}$, $Biospot^{(R)}$ and Gold $Bordo^{(R)}$ was higher than mycelial growth inhibition for Pseudocercospora vitis 04-152. The results suggest that the different types of environment-friendly farm materials are needed for different disease control in organic grape farm.

Elucidation of Mode of Action of Pantoea agglomerans 59-4 for Controlling Garlic Blue Mold (마늘 푸른곰팡이병 방제용 Pantoea agglomerans 59-4의 억제기작 해석)

  • Kim, Yong-Ki;Kwon, Mi-Kyung;Yeh, Wan-Hae;Hong, Sung-Jun;Jee, Hyung-Jin;Park, Jong-Ho;Han, Eun-Jung;Park, Kyung-Seok;Lee, Sang-Yeob;Lee, Seong-Don
    • Research in Plant Disease
    • /
    • v.16 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • To screen for potential biocontrol agents against postharvest disease of garlics caused by Penicillium hirsutum, a total of 1292 isolates were isolated from the rhizoshere or rhizoplane of Allium species. Among them, S59-4 isolate was selected as a potential biocontrol agent by in vivo wounded garlic bulb assay. The isolate was identified as Pantoea agglomerans (Pa59-4) through Biolog system. Pa59-4 did not inhibit the mycelial growth of P. hirsutum in dual-culture with P. hirsutum on tryptic soy agar. In order to elucidate mode of action of Pa59-4 on biological control, nutrient competition between Pa59-4 and P. hirsutum was investigated by the simple method using tissue culture plates with cylinder inserts containing defusing membrane reported by Janisiewicz et al. (2000). The results showed that Pa59-4 effectively suppressed spore germination and mycelial growth of blue mold in the low concentration (0.5%) of garlic juice, but it did not suppress those of blue mold in the high concentration (5%) of garlic juice. This result suggests that the mechanism in biocontrol of garlic blue mold by Pa 59-4 may be involved in nutrient competition with P. hirsutum on garlic bulbs.

Introduction and Expression of PAP gene using Agrobacterium in Scrophularia buergeriana Miquel (Agrobacterium을 이용한 PAP 유전자의 현삼으로 도입 및 형질발현)

  • Yu, Chang-Yeon;Seong, Eun-Soo;Lim, Jung-Dae;Huang, Shan-Ai;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.9 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Exogeneous application of pokeweed antiviral protein (PAP), a ribosomal-inacivating protein in the cell wall of Phytolacca americana (pokeweed) protects heterologous plants from viral and fungal infection. A cDNA clone of PAP introduced into Scrophularia buergeriana Miquel by thransformation with Agrobacterium tumefaciences. For plant transformation, explants were precultured on shoot induction medium without kanamycin for 2-5 day, and then they were cocultured with Agrobacterium for 10 minutes. The explants were placed on co culture medium in dark condition, $28^{\circ}C$ for 2days. After explants were washed in MS liquid medium, they were transferred into selection medium including kanamycin 50mg/L (MS salts+1mg/ l BAP+2mg/ l TDZ+0,2mg/ l NAA+MS vitamin+3% sucrose+0.8% agar, pH5.8). From PCR analysis, NPT II band was confirmed in transgenic plant genome and showed resistance against fungi in antifungal activity test. Micro assay to which protein extracted from transgenic line were added, revealed hyphae growth inhibition and no spore germination at high concentration. The characteristics of inhibited hyphae was represented transparent and thin. Expression of PAP in transgenic plants offers the possibility of developing resistance to viral and fungal infection.

  • PDF